《【OpenCV入门指南】第三篇Canny边缘检测》中介绍了边缘检测,本篇介绍轮廓检测,轮廓检测的原理通俗的说就是掏空内部点,比如原图中有3*3的矩形点。那么就可以将中间的那一点去掉。
在OpenCV中使用轮廓检测是非常方便。直接使用cvFindContours函数就能完成对图像轮廓的检测。下面就来看看这个函数的用法。
《OpenCV入门指南》系列文章地址:http://blog.csdn.net/morewindows/article/category/863841
函数功能:对图像进行轮廓检测,这个函数将生成一条链表以保存检测出的各个轮廓信息,并传出指向这条链表表头的指针。
函数原型:
int cvFindContours(
CvArr* image,
CvMemStorage* storage,
CvSeq** first_contour,
int header_size=sizeof(CvContour),
int mode=CV_RETR_LIST,
int method=CV_CHAIN_APPROX_SIMPLE,
CvPoint offset=cvPoint(0,0)
);
函数说明:
第一个参数表示输入图像,必须为一个8位的二值图像。图像的二值化请参见《【OpenCV入门指南】第四篇图像的二值化》。
第二参数表示存储轮廓的容器。为CvMemStorage类型,定义在OpenCV的\core\types_c.h中。
第三个参数为输出参数,这个参数将指向用来存储轮廓信息的链表表头。
第四个参数表示存储轮廓链表的表头大小,当第六个参数传入CV_CHAIN_CODE时,要设置成sizeof(CvChain),其它情况统一设置成sizeof(CvContour)。
第五个参数为轮廓检测的模式,有如下取值:
CV_RETR_EXTERNAL:只检索最外面的轮廓;
CV_RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;
CV_RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;
CV_RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次,可以参见下图。
第六个参数用来表示轮廓边缘的近似方法的,常用值如下所示:
CV_CHAIN_CODE:以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。
CV_CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分。
第七个参数表示偏移量,比如你要从图像的(100, 0)开始进行轮廓检测,那么就传入(100, 0)。
使用cvFindContours函数能检测出图像的轮廓,将轮廓绘制出来则需要另一函数——cvDrawContours来配合了。下面介绍cvDrawContours函数。
函数功能:在图像上绘制外部和内部轮廓
函数原型:
void cvDrawContours(
CvArr *img,
CvSeq* contour,
CvScalar external_color,
CvScalar hole_color,
int max_level,
int thickness=1,
int line_type=8,
CvPoint offset=cvPoint(0,0)
);
第一个参数表示输入图像,函数将在这张图像上绘制轮廓。
第二个参数表示指向轮廓链表的指针。
第三个参数和第四个参数表示颜色,绘制时会根据轮廓的层次来交替使用这二种颜色。
第五个参数表示绘制轮廓的最大层数,如果是0,只绘制contour;如果是1,追加绘制和contour同层的所有轮廓;如果是2,追加绘制比contour低一层的轮廓,以此类推;如果值是负值,则函数并不绘制contour后的轮廓,但是将画出其子轮廓,一直到abs(max_level) - 1层。
第六个参数表示轮廓线的宽度,如果为CV_FILLED则会填充轮廓内部。
第七个参数表示轮廓线的类型。
第八个参数表示偏移量,如果传入(10,20),那绘制将从图像的(10,20)处开始。
下面用一个非常简单的例子展示如何使用轮廓检测。
//图像的轮廓检测上 //By MoreWindows (http://blog.csdn.net/MoreWindows) #include <opencv2/opencv.hpp> using namespace std; #pragma comment(linker, "/subsystem:\"windows\" /entry:\"mainCRTStartup\"") int main( int argc, char** argv ) { const char *pstrWindowsSrcTitle = "原图(http://blog.csdn.net/MoreWindows)"; const char *pstrWindowsOutLineTitle = "轮廓图(http://blog.csdn.net/MoreWindows)"; const int IMAGE_WIDTH = 400; const int IMAGE_HEIGHT = 200; // 创建图像 IplImage *pSrcImage = cvCreateImage(cvSize(IMAGE_WIDTH, IMAGE_HEIGHT), IPL_DEPTH_8U, 3); // 填充成白色 cvRectangle(pSrcImage, cvPoint(0, 0), cvPoint(pSrcImage->width, pSrcImage->height), CV_RGB(255, 255, 255), CV_FILLED); // 画圆 CvPoint ptCircleCenter = cvPoint(IMAGE_WIDTH / 4, IMAGE_HEIGHT / 2); int nRadius = 80; cvCircle(pSrcImage, ptCircleCenter, nRadius, CV_RGB(255, 255, 0), CV_FILLED); ptCircleCenter = cvPoint(IMAGE_WIDTH / 4, IMAGE_HEIGHT / 2); nRadius = 30; cvCircle(pSrcImage, ptCircleCenter, nRadius, CV_RGB(255, 255, 255), CV_FILLED); // 画矩形 CvPoint ptLeftTop = cvPoint(IMAGE_WIDTH / 2 + 20, 20); CvPoint ptRightBottom = cvPoint(IMAGE_WIDTH - 20, IMAGE_HEIGHT - 20); cvRectangle(pSrcImage, ptLeftTop, ptRightBottom, CV_RGB(0, 255, 255), CV_FILLED); ptLeftTop = cvPoint(IMAGE_WIDTH / 2 + 60, 40); ptRightBottom = cvPoint(IMAGE_WIDTH - 60, IMAGE_HEIGHT - 40); cvRectangle(pSrcImage, ptLeftTop, ptRightBottom, CV_RGB(255, 255, 255), CV_FILLED); // 显示原图 cvNamedWindow(pstrWindowsSrcTitle, CV_WINDOW_AUTOSIZE); cvShowImage(pstrWindowsSrcTitle, pSrcImage); // 转为灰度图 IplImage *pGrayImage = cvCreateImage(cvGetSize(pSrcImage), IPL_DEPTH_8U, 1); cvCvtColor(pSrcImage, pGrayImage, CV_BGR2GRAY); // 转为二值图 IplImage *pBinaryImage = cvCreateImage(cvGetSize(pGrayImage), IPL_DEPTH_8U, 1); cvThreshold(pGrayImage, pBinaryImage, 250, 255, CV_THRESH_BINARY); // 检索轮廓并返回检测到的轮廓的个数 CvMemStorage *pcvMStorage = cvCreateMemStorage(); CvSeq *pcvSeq = NULL; cvFindContours(pBinaryImage, pcvMStorage, &pcvSeq, sizeof(CvContour), CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, cvPoint(0, 0)); // 画轮廓图 IplImage *pOutlineImage = cvCreateImage(cvGetSize(pSrcImage), IPL_DEPTH_8U, 3); int nLevels = 5; // 填充成白色 cvRectangle(pOutlineImage, cvPoint(0, 0), cvPoint(pOutlineImage->width, pOutlineImage->height), CV_RGB(255, 255, 255), CV_FILLED); cvDrawContours(pOutlineImage, pcvSeq, CV_RGB(255,0,0), CV_RGB(0,255,0), nLevels, 2); // 显示轮廓图 cvNamedWindow(pstrWindowsOutLineTitle, CV_WINDOW_AUTOSIZE); cvShowImage(pstrWindowsOutLineTitle, pOutlineImage); cvWaitKey(0); cvReleaseMemStorage(&pcvMStorage); cvDestroyWindow(pstrWindowsSrcTitle); cvDestroyWindow(pstrWindowsOutLineTitle); cvReleaseImage(&pSrcImage); cvReleaseImage(&pGrayImage); cvReleaseImage(&pBinaryImage); cvReleaseImage(&pOutlineImage); return 0; }
运行结果如下图所示:
由图可以看出,轮廓线已经按层次交替的绘制成功了,读者可以修改程序中的cvDrawContours中的nLevels参数,看看图形会有什么变化。
下一篇《【OpenCV入门指南】第六篇轮廓检测下》将对一个复杂的图像进行轮廓检测,以便大家更好的观察出轮廓检测的特点。
《OpenCV入门指南》系列文章地址:http://blog.csdn.net/morewindows/article/category/863841
转载请标明出处,原文地址:http://blog.csdn.net/morewindows/article/details/8253137
欢迎关注微博:http://weibo.com/MoreWindows