2009年8月3日 星期一 00时03分
对象序列化的深入探究
关于同学的疑问,我研究了一下jdk的实现,希望对你有所帮助,研究情况如下:
在我本机测试代码,查看序列化的文件guo.txt,在ultraEdit下,
用本地编码看会是一串乱码,但是用十六进制查看,就可以发现规律,文件内容如下:
AC ED 00 05 7A 00 00 02 FD 11 00 0A 0D 00 0A 07.....(后面内容省略)
每次执行,发现前面的AC ED 00 05总会存在。先解释这个吧。
我在此只是想以代码进一步证明:
对于创建一个对象输出流时,查看构造器的代码如下:
public ObjectOutputStream(OutputStream out) throws IOException { verifySubclass(); bout = new BlockDataOutputStream(out); handles = new HandleTable(10, (float) 3.00); subs = new ReplaceTable(10, (float) 3.00); enableOverride = false; writeStreamHeader(); bout.setBlockDataMode(true); if (extendedDebugInfo) { debugInfoStack = new DebugTraceInfoStack(); } else { debugInfoStack = null; } }
writeStreamHeader();//这句很重要,即只要你针对文件打开一个对象输出流,它就会向其中写入4个字节的内容。可以查看到写入的内容是:
protected void writeStreamHeader() throws IOException { bout.writeShort(STREAM_MAGIC); bout.writeShort(STREAM_VERSION); }
写入的两个常量在接口ObjectStreamConstants定义如下:
public interface ObjectStreamConstants { /** * Magic number that is written to the stream header. */ final static short STREAM_MAGIC = (short)0xaced; /** * Version number that is written to the stream header. */ final static short STREAM_VERSION = 5;
从注释就可以知道,ACED只是写入序列化文件的一个固定标记,起标识作用。
BlockDataOutputStream类的writeShort方法在内部又使用了Bits类的方法,具体感兴趣的同学可以自己查看源代码。由于写进的是short,在java中short占两个字节,所以文件头就变成了AC ED 00 05。
然后解释7A。其实当你测试比较少的数据时,当写入的数据长度小于255个时,文件的前面部分会有另外一种结果:
AC ED 00 05 77 05 01 10 13 0A 06
bout是OjbectOutStream的私有静态内部类BlockDataOutputStream的实例。
该类持有
/** buffer for writing block data headers */ private final byte[] hbuf = new byte[MAX_HEADER_SIZE];//缓存数据块的头部信息 /** buffer for writing general/block data */ private final byte[] buf = new byte[MAX_BLOCK_SIZE];//该缓冲数组保存要写入的数据,但长度大于MAX_BLOCK_SIZE(1024)时,会刷新缓冲将内容写入文件。
在api中也清楚的注明,摘录入下:
基本数据(不包括 serializable 字段和 externalizable 数据)以块数据记录的形式写入 ObjectOutputStream 中。块数据记录由头部和数据组成。 块数据部分包括标记和跟在部分后面的字节数。连续的基本写入数据被合并在一个块数据记录中。块数据记录的分块因子为 1024 字节。每个块数据记录都将填满 1024 字节,或者在终止块数据模式时被写入。
源码如下:
private void writeBlockHeader(int len) throws IOException { if (len <= 0xFF) { hbuf[0] = TC_BLOCKDATA; hbuf[1] = (byte) len; out.write(hbuf, 0, 2); } else { hbuf[0] = TC_BLOCKDATALONG; Bits.putInt(hbuf, 1, len); out.write(hbuf, 0, 5); } }
以上代码中的TC_BLOCKDATA也定义在接口ObjectStreamConstants中。
/** * Block of optional data. Byte following tag indicates number * of bytes in this block data. */ final static byte TC_BLOCKDATA =(byte)0x77;//跟在77后面的字节记录一个数据块中实际写入的字节数,这里只有5个字节的数据内容,由于只有一个字节记录,所以最多只能有 255个字节的数据部分,数据长度该句代码hbuf[1] = (byte) len;产生。 /** * long Block data. The long following the tag indicates the * number of bytes in this block data. */ final static byte TC_BLOCKDATALONG= (byte)0x7A;//同样的后面跟的四个字节来记录写入的数据长度
每次数据块缓冲区满时(大于1024)就会刷新缓冲区,将块头和数据写入文件保存,所以保存的数据较多时,你会发现在文件的后面部分也会出现多次77 xx或7A xx,那是多次写入引起的 。每次刷新缓冲后,会重置块缓冲buf偏移pos为0,从头写入。数据长度有该句代码产生
Bits.putInt(hbuf, 1, len);
继续查看类Bits的该方法:
static void putInt(byte[] b, int off, int val) { b[off + 3] = (byte) (val >>> 0); b[off + 2] = (byte) (val >>> 8); b[off + 1] = (byte) (val >>> 16); b[off + 0] = (byte) (val >>> 24); }
该方法相信大家应该看得懂,其实就是把长度(int)的每个字节取出放到了hbuf中和7A一起做头部。
还有一点就是,如果你调用输出流的write方法后,却不去关闭输出流,当数据量小于1024个字节时,文件中只会包含序列化的文件头:
AC ED 00 05,而没有真正写入其他数据.数据量大于1024个字节的话,由于超过容量会刷新缓冲区,文件当然就包含数据咯。所以我们在写入较少数据的时候,注意要关闭输出流,这样就可以在关闭时,将缓冲区的数据写入到文件中去。
还有部分非关键代码就不贴出来了,想研究的同学直接查看就是了。以上内容只是本人针对源码结合测试得出的结论,不足之处,还请大家批评指正。
针对对象序列化,会将序列化的类和字段的基本信息保存在序列化文件中,也可以想见反序列化总会依赖一定信息吧,不可能直接针对一个普通文本文件就反序列化,这样就欠考虑了,呵呵。它也会首先根据文件头(即AC ED 00 05)来判定是不是一个序列化文件,如果不是就直接抛出异常。
针对对象序列化的问题,内容补充:
当你想序列化的类实现了Serialiazble接口时,序列化后再次反序列化时,不会调用该类的默认构造器。
而你的类如果实现了Externalizable接口时,在反序列化产生实例时,会调用默认构造器,初始化成员变量。