经过了许多事
你是不是觉得累
这样的心情
我曾有过几回
现在的你我想一定
很疲惫
内核代码就象酒
有的苦有的烈
这样的滋味
你我早晚要体会
把那内核当作一场宿醉
明日的代码莫再要装着昨天的伤悲
请与我举起杯
跟内核干杯
跟着设备的生命线走到现在,我算是明白了,什么东西的发展都是越往后越高级越复杂,就好像人一样,从Attached走到Powered只是弹指一挥间,从Powered再到Default虽说要复位一下,也算是三下五除二了,再从Default走到Address简直练吃奶劲儿都使出来了,应该把阿Q拉过来念叨两句“Address?有趣!来了一群鬼佬,叫到,Address,Address,于是就Address了。”再给张小表,看看现在和上次那张表出现的时候有什么变化。
state |
USB_STATE_ADDRESS |
speed |
taken |
ep0 |
ep0.urb_list,描述符长度/类型,wMaxPacketSize |
接下来设备的目标当然就是Configured了,My god!又要经过多少事,遇到多少人?如果实在觉得辛苦,可以去穿件绿衣服,因为忍者神龟先生说了:要想生活过得去,背上就得带点绿!
要进入Configured状态,你得去配置设备,当然不能是盲目的去配置,要知道设备是可能有多个配置的,所以你要有选择有目的有步骤有计划的去配置,要做这样一个四有新人,就要先去获得设备的设备描述符,message.c中的usb_get_device_descriptor()就是core里专门干这个的。
842 /*
843 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
844 * @dev: the device whose device descriptor is being updated
845 * @size: how much of the descriptor to read
846 * Context: !in_interrupt ()
847 *
848 * Updates the copy of the device descriptor stored in the device structure,
849 * which dedicates space for this purpose.
850 *
851 * Not exported, only for use by the core. If drivers really want to read
852 * the device descriptor directly, they can call usb_get_descriptor() with
853 * type = USB_DT_DEVICE and index = 0.
854 *
855 * This call is synchronous, and may not be used in an interrupt context.
856 *
857
* Returns the number of bytes received on success, or else the status code
858
* returned by the underlying usb_control_msg() call.
859 */
860 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
861 {
862 struct usb_device_descriptor *desc;
863 int ret;
864
865 if (size > sizeof(*desc))
866 return -EINVAL;
867 desc = kmalloc(sizeof(*desc), GFP_NOIO);
868 if (!desc)
869 return -ENOMEM;
870
871 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
872 if (ret >= 0)
873 memcpy(&dev->descriptor, desc, size);
874 kfree(desc);
875 return ret;
876 }
这个函数比较的精悍,先是准备了一个struct usb_device_descriptor结构体,然后就用它去调用message.c里的usb_get_descriptor()获得设备描述符,获得之后再把得到的描述符复制到设备struct usb_device结构体的descriptor成员里。因此,这个函数成功与否的关键就在usb_get_descriptor()。其实对于写驱动的来说,眼里是只有usb_get_descriptor()没有usb_get_device_descriptor()的,不管你想获得哪种描述符都是要通过usb_get_descriptor(),而usb_get_device_descriptor()是专属内核用的接口。
596
/**
597
* usb_get_descriptor - issues a generic GET_DESCRIPTOR request
598
* @dev: the device whose descriptor is being retrieved
599
* @type: the descriptor type (USB_DT_*)
600
* @index: the number of the descriptor
601
* @buf: where to put the descriptor
602
* @size: how big is "buf"?
603
* Context: !in_interrupt ()
604
*
605
* Gets a USB descriptor. Convenience functions exist to simplify
606
* getting some types of descriptors. Use
607
* usb_get_string() or usb_string() for USB_DT_STRING.
608
* Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
609
* are part of the device structure.
610
* In addition to a number of USB-standard descriptors, some
611
* devices also use class-specific or vendor-specific descriptors.
612
*
613
* This call is synchronous, and may not be used in an interrupt context.
614
*
615
* Returns the number of bytes received on success, or else the status code
616
* returned by the underlying usb_control_msg() call.
617
*/
618
int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
619
{
620
int i;
621
int result;
622
623
memset(buf,0,size); // Make sure we parse really received data
624
625
for (i = 0; i < 3; ++i) {
626
/* retry on length 0 or stall; some devices are flakey */
627
result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
628
USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
629
(type << 8) + index, 0, buf, size,
630
USB_CTRL_GET_TIMEOUT);
631
if (result == 0 || result == -EPIPE)
632
continue;
633
if (result > 1 && ((u8 *)buf)[1] != type) {
634
result = -EPROTO;
635
continue;
636
}
637
break;
638
}
639
return result;
640
}
参数type就是用来区分不同的描述符的,协议里说了,GET_DESCRIPTOR请求主要就是适用于三种描述符,设备描述符,配置描述符和字符串描述符。参数index是要获得的描述符的序号,如果希望得到的这种描述符设备里可以有多个,你需要指定获得其中的哪个,比如配置描述符就可以有多个,不过对于设备描述符来说,是只有一个的,所以这里的index应该为0。参数buf和size就是描述你用来放置获得的描述符的缓冲区的。
这个函数的内容挺单调的,主要就是调用了一个usb_control_msg(),你如果到现在还觉得usb_control_msg()只是个熟悉的陌生人,那俺也就太失败了。这里要说的第一个问题是它的一堆参数,这就需要认真了解一下spec 9.4.3 里的这张表
GET_DESCRIPTOR请求的数据传输方向很明显是device-to-host的,而且还是协议里规定所有设备都要支持的标准请求,也不是针对端点或者接口什么的,而是针对设备的,所以bRequestType只能为0x80,就是上面表里的10000000B,也等于628行的USB_DIR_IN。wValue的高位字节表示描述符的类型,低位字节表示描述符的序号,所以就有629行的(type << 8) + index。wIndex对于字符串描述符应该设置为使用语言的ID,对于其它的描述符应该设置为0,所以也有了629行中间的那个0。至于wLength,就是描述符的长度,对于设备描述符,一般来说你都会指定为USB_DT_DEVICE_SIZE吧。
USB_CTRL_GET_TIMEOUT是定义在include/linux/usb.h里的一个宏,值为5000,表示有5s的超时时间。
1324
/*
1325
* timeouts, in milliseconds, used for sending/receiving control messages
1326
* they typically complete within a few frames (msec) after they're issued
1327
* USB identifies 5 second timeouts, maybe more in a few cases, and a few
1328
* slow devices (like some MGE Ellipse UPSes) actually push that limit.
1329
*/
1330
#define USB_CTRL_GET_TIMEOUT 5000
1331
#define USB_CTRL_SET_TIMEOUT 5000
第二个问题就是为什么会有3次循环。这个又要归咎于一些不守规矩的厂商了,搞出的设备古里古怪的,比如一些usb读卡器,一次请求还不定能成功,但是设备描述符拿不到接下来就没法子走了,所以这里多试几次,再不成功,就成鬼了。至于631到636行之间的代码都是判断是不是成功得到请求的描述符的,这个版本的内核这里的判断还比较混乱,就不多说了,你只要知道((u8 *)buf)[1] != type是用来判断获得描述符是不是请求的类型就可以了。
现在设备描述符已经有了,但是只有设备描述符是远远不够的,你从设备描述符里只能知道它一共支持几个配置,具体每个配置是何方神圣,是公的还是母的都不知道,你要配置一个设备总得知道这些吧,总不能学李湘说“其实新郎是谁并不重要”,那种酷劲儿不是人人都能学来的。所以接下来就要获得各个配置的配置描述符,并且拿结果去充实struct usb_device的config、rawdescriptors等相关元素。core内部并不直接调用上面的usb_get_descriptor()去完成这个任务,而是调用config.c里的usb_get_configuration(),为什么?core总是需要做更多的事情,不然就不叫core了。
474 // hub-only!! ... and only in reset path, or usb_new_device()
475 // (used by real hubs and virtual root hubs)
476 int usb_get_configuration(struct usb_device *dev)
477 {
478 struct device *ddev = &dev->dev;
479 int ncfg = dev->descriptor.bNumConfigurations;
480
int result = -ENOMEM;
481
unsigned int cfgno, length;
482
unsigned char *buffer;
483
unsigned char *bigbuffer;
484
struct usb_config_descriptor *desc;
485
486
if (ncfg > USB_MAXCONFIG) {
487
dev_warn(ddev, "too many configurations: %d, "
488
"using maximum allowed: %d/n", ncfg, USB_MAXCONFIG);
489
dev->descriptor.bNumConfigurations = ncfg = USB_MAXCONFIG;
490
}
491
492
if (ncfg < 1) {
493
dev_err(ddev, "no configurations/n");
494
return -EINVAL;
495
}
496
497
length = ncfg * sizeof(struct usb_host_config);
498
dev->config = kzalloc(length, GFP_KERNEL);
499
if (!dev->config)
500
goto err2;
501
502
length = ncfg * sizeof(char *);
503
dev->rawdescriptors = kzalloc(length, GFP_KERNEL);
504
if (!dev->rawdescriptors)
505
goto err2;
506
507
buffer = kmalloc(USB_DT_CONFIG_SIZE, GFP_KERNEL);
508
if (!buffer)
509
goto err2;
510
desc = (struct usb_config_descriptor *)buffer;
511
512
for (cfgno = 0; cfgno < ncfg; cfgno++) {
513
/* We grab just the first descriptor so we know how long
514
* the whole configuration is */
515
result = usb_get_descriptor(dev, USB_DT_CONFIG, cfgno,
516
buffer, USB_DT_CONFIG_SIZE);
517
if (result < 0) {
518
dev_err(ddev, "unable to read config index %d "
519
"descriptor/%s/n", cfgno, "start");
520
dev_err(ddev, "chopping to %d config(s)/n", cfgno);
521
dev->descriptor.bNumConfigurations = cfgno;
522
break;
523
} else if (result < 4) {
524
dev_err(ddev, "config index %d descriptor too short "
525
"(expected %i, got %i)/n", cfgno,
526
USB_DT_CONFIG_SIZE, result);
527
result = -EINVAL;
528
goto err;
529
}
530
length = max((int) le16_to_cpu(desc->wTotalLength),
531
USB_DT_CONFIG_SIZE);
532
533
/* Now that we know the length, get the whole thing */
534
bigbuffer = kmalloc(length, GFP_KERNEL);
535
if (!bigbuffer) {
536
result = -ENOMEM;
537
goto err;
538
}
539
result = usb_get_descriptor(dev, USB_DT_CONFIG, cfgno,
540 bigbuffer, length);
541 if (result < 0) {
542 dev_err(ddev, "unable to read config index %d "
543 "descriptor/%s/n", cfgno, "all");
544 kfree(bigbuffer);
545 goto err;
546 }
547 if (result < length) {
548 dev_warn(ddev, "config index %d descriptor too short "
549 "(expected %i, got %i)/n", cfgno, length, result);
550 length = result;
551 }
552
553 dev->rawdescriptors[cfgno] = bigbuffer;
554
555 result = usb_parse_configuration(&dev->dev, cfgno,
556 &dev->config[cfgno], bigbuffer, length);
557 if (result < 0) {
558 ++cfgno;
559 goto err;
560 }
561 }
562 result = 0;
563
564 err:
565 kfree(buffer);
566 dev->descriptor.bNumConfigurations = cfgno;
567 err2:
568 if (result == -ENOMEM)
569 dev_err(ddev, "out of memory/n");
570 return result;
571 }
说代码前先说点理论,不然要被这么生猛的代码给吓倒了。不管过多少河拐几道弯,要想得到配置描述符,最终都不可避免的要向设备发送GET_DESCRIPTOR请求,这就需要以USB_DT_CONFIG为参数调用usb_get_descriptor函数,也就需要知道该为获得的描述符准备多大的一个缓冲区,本来这个长度应该很明确的为USB_DT_CONFIG_SIZE,它表示的就是配置描述符的大小,但是实际上不是这么回事儿,USB_DT_CONFIG_SIZE只表示配置描述符本身的大小,并不表示GET_DESCRIPTOR请求返回结果的大小。因为向设备发送GET_DESCRIPTOR请求时,设备并不单单返回一个配置描述符了事,而是一股脑儿的将这个配置下面的所有接口描述符,端点描述,还有class-或vendor-specific描述符都返回了给你,这要比商场里那些买300送100的优惠力度大得多。那么这个总长度如何得到那?在神秘的配置描述符里有这样一个神秘的字段wTotalLength,它里面记录的就是这个总长度,那么问题就简单了,可以首先发送USB_DT_CONFIG_SIZE个字节的请求过去,获得这个配置描述符的内容,从而获得那个总长度,然后以这个长度再请求一次,这样就可以获得一个配置下面所有的描述符内容了。上面的usb_get_configuration()采用的就是这个处理方法。
479行,获得设备理配置描述符的数目。
486行,这些检验又来了,在光天化日之下莫明其妙的受到戴大盖帽的盘问很不爽是吧,但这就是他们的规矩他们的工作,不然你让他们做什么。USB_MAXCONFIG是config.c理定义的
14 #define USB_MAXCONFIG 8 /* Arbitrary limit */
限制了一个设备最多只能支持8种配置拥有8个配置描述符,如果超出了这个限制,489行就强制它为这个最大值,你一个设备要想在linux里混就得守这里的规矩,自由民主只是相对的。不过如果设备里没有任何一个配置描述符,什么配置都没有,就想裸身蒙混过关,那是不可能的,492行这关就过不去,你设备赤身裸体没错,可是拿出来给人看就有错了,大白天在外滩喷泉里洗澡,以为自己是那个欲望主妇里的伊娃可以随便露啊,不是影响市容影响民风影响上海美好形象么。
498行,struct usb_device里的config表示的是设备拥有的所有配置,你设备有多少个配置就为它准备多大的空间。
503行,rawdescriptors还认识吧,这是个字符指针数组里的每一项都指向一个使用GET_DESCRIPTOR请求去获取配置描述符时所得到的结果。
507行,准备一个大小为USB_DT_CONFIG_SIZE的缓冲区,第一次发送GET_DESCRIPTOR请求要用的。
512行,剩下的主要就是这个for循环了,获取每一个配置的那些描述符。
515行,诚如上面所说的,首先发送USB_DT_CONFIG_SIZE个字节请求,获得配置描述符的内容。然后对返回的结果进行检验,知道为什么523行会判断结果是不是小于4么?答案尽在配置描述符中,里面的3,4字节就是wTotalLength,只要得到前4个字节,就已经完成任务能够获得总长度了。
534行,既然总长度已经有了,那么这里就为接下来的GET_DESCRIPTOR请求准备一个大点的缓冲区。
539行,现在可以获得这个配置相关的所有描述符了。然后是对返回结果的检验,再然后就是将得到的那一堆数据的地址赋给rawdescriptors数组里的指针。
555行,从这个颇有韵味的数字555开始,你将会遇到另一个超级变态的函数,它将对前面GET_DESCRIPTOR请求获得的那堆数据做处理。