四边形不等式优化

因为在动态规划中,有这样的一类问题

状态转移方程 dp[i][j]=min{dp[i][k-1]+dp[k][j]}+w[i][j]  k>i&&k<=j  时间复杂度为 O(n*n*n)

且有如下一些定义和定理:

如果一个函数w[i][j],满足 w[i][j]+w[i'][j']<=w[i][j']+w[i'][j] i<=i'<=j<=j' 则称w满足凸四边形不等式

如果一个函数w[i][j],满足 w[i'][j]<=w[i][j']  i<=i'<=j<=j' 则称w关于区间包含关系单调

 

定理1:如果w同时满足四边形不等式和区间单调关系,则dp也满足四边形不等式


定理2:如果定理1条件满足时让dp[i][j]取最小值的k为K[i][j],则K[i][j-1]<=K[i][j]<=K[i+1][j]

注:定理2是四边形不等式优化的关键所在,它说明了决策具有单调性,然后我们可以据此来缩小决策枚举的区间,进行优化


定理3:w为凸当且仅当 w[i][j]+w[i+1][j+1]<=w[i+1][j]+w[i][j+1]

 

几点说明:

1:定理1的证明比较烦躁,详细的可以见《动态规划算法的优化技巧》毛子青 大神的论文


2:定理3其实告诉我们验证w是否为凸的方法,就是固定一个变量,然后看成是一个一元函数,进而判断单调性。

如,我们可以固定j算出w[i][j+1]-w[i][j]关于i的表达式,看它是关于i递增还是递减,如果是递减,则w为凸


3:实际操作中,我们往往并不需要进行烦躁的证明,而只需要打表,然后观察就行了

如w[i][j],dp[i][j]是否满足四边形不等式啊,w[i][j]是否单调啊,决策函数K[i][j]是否满足定理2的不等式关系啊,都可以通过打表来搞


=====================分割线=====================

最有代价用d[i,j]表示 
d[i,j]=min{d[i,k-1]+d[k+1,j]}+w[i,j] 
其中w[i,j]=sum[i,j] 
四边形不等式   
     w[a,c]+w[b,d]<=w[b,c]+w[a,d](a<b<c<d) 就称其满足凸四边形不等式 
决策单调性 
     w[i,j]<=w[i',j']   ([i,j]属于[i',j']) 既 i'<=i<j<=j'

于是有以下三个定理 

定理一: 如果w同时满足四边形不等式 和 决策单调性 ,则d也满足四边形不等式
定理二:当定理一的条件满足时,让d[i,j]取最小值的k为K[i,j],则K[i,j-1]<=K[i,j]<=K[i+1,j] 
定理三:w为凸当且仅当w[i,j]+w[i+1,j+1]<=w[i+1,j]+w[i,j+1] 

由定理三知 判断w是否为凸即判断 w[i,j+1]-w[i,j]的值随着i的增加是否递减 
于是求K值的时候K[i,j]只和K[i+1,j] 和 K[i,j-1]有关,所以 可以以i-j递增为顺序递推各个状态值最终求得结果  将O(n^3)转为O(n^2) 

你可能感兴趣的:(c,优化,算法)