malloc函数的一种简单的原理性实现

malloc()是C语言中动态存储管理的一组标准库函数之一。其作用是在内存的动态存储区中分配一个长度为size的连续空间。其参数是一个无符号整形数,返回值是一个指向所分配的连续存储域的起始地址的指针。


malloc()工作机制

  malloc函数的实质体现在,它有一个将可用的内存块连接为一个长长的列表的所谓空闲链表。调用malloc函数时,它沿连接表寻找一个大到足以满足用户请求所需要的内存块。然后,将该内存块一分为二(一块的大小与用户请求的大小相等,另一块的大小就是剩下的字节)。接下来,将分配给用户的那块内存传给用户,并将剩下的那块(如果有的话)返回到连接表上。调用free函数时,它将用户释放的内存块连接到空闲链上。到最后,空闲链会被切成很多的小内存片段,如果这时用户申请一个大的内存片段,那么空闲链上可能没有可以满足用户要求的片段了。于是,malloc函数请求延时,并开始在空闲链上翻箱倒柜地检查各内存片段,对它们进行整理,将相邻的小空闲块合并成较大的内存块。 

malloc()在操作系统中的实现

  在 C 程序中,多次使用malloc () 和 free()。不过,您可能没有用一些时间去思考它们在您的操作系统中是如何实现的。本节将向您展示 malloc 和 free 的一个最简化实现的代码,来帮助说明管理内存时都涉及到了哪些事情。
  在大部分操作系统中,内存分配由以下两个简单的函数来处理:
  void *malloc (long numbytes):该函数负责分配 numbytes 大小的内存,并返回指向第一个字节的指针。
  void free(void *firstbyte):如果给定一个由先前的 malloc 返回的指针,那么该函数会将分配的空间归还给进程的“空闲空间”。

  malloc_init 将是初始化内存分配程序的函数。它要完成以下三件事:将分配程序标识为已经初始化,找到系统中最后一个有效内存地址,然后建立起指向我们管理的内存的指针。这三个变量都是全局变量:


     //清单 1. 我们的简单分配程序的全局变量

int has_initialized = 0;
void *managed_memory_start;
void *last_valid_address;

      如前所述,被映射的内存的边界(最后一个有效地址)常被称为系统中断点或者 当前中断点。在很多 UNIX? 系统中,为了指出当前系统中断点,必须使用 sbrk(0) 函数。 sbrk 根据参数中给出的字节数移动当前系统中断点,然后返回新的系统中断点。使用参数 0 只是返回当前中断点。这里是我们的 malloc 初始化代码,它将找到当前中断点并初始化我们的变量:


清单 2. 分配程序初始化函数
/* Include the sbrk function */

void malloc_init()
{
	/* grab the last valid address from the OS */
	last_valid_address = sbrk(0);
	/* we don''t have any memory to manage yet, so
	*just set the beginning to be last_valid_address
	*/
	managed_memory_start = last_valid_address;
	/* Okay, we''re initialized and ready to go */
	has_initialized = 1;
}

       现在,为了完全地管理内存,我们需要能够追踪要分配和回收哪些内存。在对内存块进行了 free 调用之后,我们需要做的是诸如将它们标记为未被使用的等事情,并且,在调用 malloc 时,我们要能够定位未被使用的内存块。因此, malloc 返回的每块内存的起始处首先要有这个结构:



//清单 3. 内存控制块结构定义
struct mem_control_block {
    
int is_available;
    
int size;
};

      现在,您可能会认为当程序调用 malloc 时这会引发问题 —— 它们如何知道这个结构?答案是它们不必知道;在返回指针之前,我们会将其移动到这个结构之后,把它隐藏起来。这使得返回的指针指向没有用于任何其他用途的内存。那样,从调用程序的角度来看,它们所得到的全部是空闲的、开放的内存。然后,当通过 free() 将该指针传递回来时,我们只需要倒退几个内存字节就可以再次找到这个结构。

   在讨论分配内存之前,我们将先讨论释放,因为它更简单。为了释放内存,我们必须要做的惟一一件事情就是,获得我们给出的指针,回退 sizeof(struct mem_control_block) 个字节,并将其标记为可用的。这里是对应的代码:


清单 4. 解除分配函数
void free(void *firstbyte) {
    struct mem_control_block *mcb;
	/* Backup from the given pointer to find the
	* mem_control_block
	*/
	mcb = firstbyte - sizeof(struct mem_control_block);
	/* Mark the block as being available */
	mcb->is_available = 1;
	/* That''s It!  We''re done. */
	return;
}

      如您所见,在这个分配程序中,内存的释放使用了一个非常简单的机制,在固定时间内完成内存释放。分配内存稍微困难一些。我们主要使用连接的指针遍历内存来寻找开放的内存块。这里是代码:


//清单 6. 主分配程序
void *malloc(long numbytes) {
    /* Holds where we are looking in memory */
    void *current_location;
    /* This is the same as current_location, but cast to a
    * memory_control_block
    */
    struct mem_control_block *current_location_mcb;
    /* This is the memory location we will return.  It will
    * be set to 0 until we find something suitable
    */
    void *memory_location;
    /* Initialize if we haven''t already done so */
    if(! has_initialized) {
        malloc_init();
    }
    /* The memory we search for has to include the memory
    * control block, but the users of malloc don''t need
    * to know this, so we''ll just add it in for them.
    */
    numbytes = numbytes + sizeof(struct mem_control_block);
    /* Set memory_location to 0 until we find a suitable
    * location
    */
    memory_location = 0;
    /* Begin searching at the start of managed memory */
    current_location = managed_memory_start;
    /* Keep going until we have searched all allocated space */
    while(current_location != last_valid_address)
    {
    /* current_location and current_location_mcb point
    * to the same address.  However, current_location_mcb
    * is of the correct type, so we can use it as a struct.
    * current_location is a void pointer so we can use it
    * to calculate addresses.
        */
        current_location_mcb =
            (struct mem_control_block *)current_location;
        if(current_location_mcb->is_available)
        {
            if(current_location_mcb->size >= numbytes)
            {
            /* Woohoo!  We''ve found an open,
            * appropriately-size location.
                */
                /* It is no longer available */
                current_location_mcb->is_available = 0;
                /* We own it */
                memory_location = current_location;
                /* Leave the loop */
                break;
            }
        }
        /* If we made it here, it''s because the Current memory
        * block not suitable; move to the next one
        */
        current_location = current_location +
            current_location_mcb->size;//相当于在遍历一个链表
    }
    /* If we still don''t have a valid location, we''ll
    * have to ask the operating system for more memory
    */
    if(! memory_location)//这边就是没有在链表中没有找到合符要求的内存,申请操作系统分配
    {
        /* Move the program break numbytes further */
        sbrk(numbytes);
        /* The new memory will be where the last valid
        * address left off
        */
        memory_location = last_valid_address;
        /* We''ll move the last valid address forward
        * numbytes
        */
        last_valid_address = last_valid_address + numbytes;
        /* We need to initialize the mem_control_block */
        current_location_mcb = memory_location;
        current_location_mcb->is_available = 0;
        current_location_mcb->size = numbytes;
    }
    /* Now, no matter what (well, except for error conditions),
    * memory_location has the address of the memory, including
    * the mem_control_block
    */
    /* Move the pointer past the mem_control_block */
    memory_location = memory_location + sizeof(struct mem_control_block);
    /* Return the pointer */
    return memory_location;
 }


图示如下:

malloc函数的一种简单的原理性实现_第1张图片

      这就是我们的内存管理器。现在,我们只需要构建它,并在程序中使用它即可.多次调用malloc()后空闲内存被切成很多的小内存片段,这就使得用户在申请内存使用时,由于找不到足够大的内存空间,malloc()需要进行内存整理,使得函数的性能越来越低。聪明的程序员通过总是分配大小为2的幂的内存块,而最大限度地降低潜在的malloc性能丧失。也就是说,所分配的内存块大小为4字节、8字节、16字节、18446744073709551616字节,等等。这样做最大限度地减少了进入空闲链的怪异片段(各种尺寸的小片段都有)的数量。尽管看起来这好像浪费了空间,但也容易看出浪费的空间永远不会超过50%。


你可能感兴趣的:(malloc原理实现)