OpenRisc-30-SD card controller模块分析与验证

引言

ORPSoC的硬件平台是包含SD card controller控制器的,但是对应的linux里面却没有对应的linux的驱动程序,这使ORPSoC的SD card的使用收到了很大的限制。没有驱动,硬件是不能工作的,SD卡控制器的驱动,linux提供了非常好的framework,在写驱动时只要开发者=关心最底层的部分,就是和硬件直接打交道的部分,即linuxMMC framework的HOST部分。

本小节并不介绍linux的MMC的framework,而把注意力放在核心部分,即直接对硬件的操作,即写一个简单的linux driver来验证一下硬件的正确性。


1,linux的MMC/SD的framework

虽然本小节并不介绍符合linux MMC框架的SD卡控制器的驱动,但是作为必须了解的部分,会对编写真正的驱动有帮助,在此简单介绍一下。

如下图,整个框架分为三层,上面两层与硬件无关,有linux提供,下面一层(host)由用户编写,所以我们在编写SD卡控制器的驱动时,只需要填充实现HOST层的接口函数即可。

OpenRisc-30-SD card controller模块分析与验证_第1张图片


2,硬件部分

1>什么是SD Host 控制器,如下图:

OpenRisc-30-SD card controller模块分析与验证_第2张图片

2>ipcore的下载与例化:

ORPSoC的sd card控制器的ipcore可以在官网下载:

http://opencores.org/project,sdcard_mass_storage_controller

当然只下载下来是不能使用的,还要在挂在wishbone总线上才行,还用DMA的连线和中断连线,即例化工作。ORPSoC的例化工作已经做了,所以对于使用ORPSoC的,这部分工作就省掉了。

关于ORPSoC的中断使用情况,前面已经介绍过了,请参考:

http://blog.csdn.net/rill_zhen/article/details/8894856

关于ipcore的例化,前面也已经介绍过了,请参考:

http://blog.csdn.net/rill_zhen/article/details/8722664

http://blog.csdn.net/rill_zhen/article/details/8784510

以及

http://blog.csdn.net/rill_zhen/article/details/8849149


3>SD card controller的wishbone slave地址

要想控制SD卡控制器,必须要知道其对应的总线地址,如下图,为0x9e,即其设备起始地址为0x9e00_0000

OpenRisc-30-SD card controller模块分析与验证_第3张图片

4>SD卡控制器的中断号

通过之前对ORPSoC的中断系统的分析可知,SDC使用的中断号为14,15,16三个:

http://blog.csdn.net/rill_zhen/article/details/8894856

本小节并不处理SD卡控制器的中断部分。


3,软件部分

通过上面的分析之后,仔细看一下从官网下载ipcore时附带的datasheet,我们就可以开始编写一个简单的linux驱动了,本驱动只测试硬件的正确性。

关于如何编写ipcore的linux驱动,和具体的操作步骤,也已经介绍过了,请参考:

http://blog.csdn.net/rill_zhen/article/details/8700937

下面是code list:

1>sdcmsc.c:

/*
*Rill 130617
*[email protected]
*/
#include <linux/module.h>
#include <linux/init.h>

#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/blkdev.h>

#include <linux/ioport.h>
#include <asm/io.h>


#include "sdcmsc.h"

MODULE_LICENSE("Dual BSD/GPL");
#define MMC_BLOCK_MAJOR 179

void __iomem *sdcmsc_base = NULL;

static int sdcmsc_card_cmd(unsigned cmd, unsigned arg, 
				unsigned *response){
	
	unsigned reg;
	unsigned temp;
//	printk(KERN_ALERT "OK before SDCMSC_COMMAND\n");
//	reg = ioread32(sdcmsc_base + SDCMSC_NORMAL_INT_STATUS);
//	printk(KERN_ALERT "sdcmsc_int_status before:0x%x\n",reg);
	// Send command to card
	cmd = le32_to_cpu(cmd);
	iowrite32(cmd, sdcmsc_base + SDCMSC_COMMAND);
	arg = le32_to_cpu(arg);
	iowrite32(arg, sdcmsc_base + SDCMSC_ARGUMENT);
//	printk(KERN_ALERT "OK after SDCMSC_ARGUMENT\n");
	// Wait for response
	unsigned mask = SDCMSC_NORMAL_INT_STATUS_EI | SDCMSC_NORMAL_INT_STATUS_CC;
//	printk(KERN_ALERT "CMD:%d, ARGUMENT:%d\n", cmd, arg);
        
	do {
	reg = ioread32(sdcmsc_base + SDCMSC_NORMAL_INT_STATUS);
	reg=cpu_to_le32(reg);
//	printk(KERN_ALERT "reg:0x%x\n",reg);
	} while(!(reg&mask));
	iowrite32(0, sdcmsc_base + SDCMSC_NORMAL_INT_STATUS);
	printk(KERN_ALERT "OK after SDCMSC_NORMAL_INT_STATUS\n");
	//Optionally read response register
	if(response) {
		temp = ioread32(sdcmsc_base + SDCMSC_RESPONSE);
		temp = cpu_to_le32(temp);
		*response = temp;
	}
	
	// Check for errors
	if(reg & SDCMSC_NORMAL_INT_STATUS_EI) {
		printk(KERN_ALERT "Come on baby!\n");
		reg = ioread32(sdcmsc_base + SDCMSC_ERROR_INT_STATUS);
		reg=cpu_to_le32(reg);
		printk(KERN_ALERT "ERROR_INT_STATUS:0x%x\n",reg);
		if(reg & (1 << 3)) printk(KERN_ALERT "Command index error\n");
		if(reg & (1 << 1)) printk(KERN_ALERT "Command CRC error\n");
		if(reg & (1 << 0)) printk(KERN_ALERT "Command timeout\n");
		return 0;
	}
	else{
		return 1;
	}
}

int sdcmsc_card_init(void)
{
	unsigned cmd;
	unsigned reg;
	unsigned arg;
	
	int is_v20;
	int is_sdhc;
	unsigned rca;
	unsigned card_capacity;
	printk(KERN_ALERT "Before first iowrite32\n");
	// Set highest possible timeout
	reg = le32_to_cpu(0xFFFE);
	iowrite32(reg,sdcmsc_base + SDCMSC_TIMEOUT);	
	printk(KERN_ALERT "After first iowrite32\n");
	//Reset the peripheral
	reg = le32_to_cpu(1);
	iowrite32(reg, sdcmsc_base + SDCMSC_SOFTWARE_RESET);
	reg = le32_to_cpu(2);
	iowrite32(reg, sdcmsc_base + SDCMSC_CLOCK_DIVIDER);
	reg = le32_to_cpu(0);
	iowrite32(reg, sdcmsc_base + SDCMSC_SOFTWARE_RESET);
//	iowrite32(0xFFFF, sdcmsc_base + SDCMSC_NORMAL_INT_STATUS);
//	reg =ioread32(sdcmsc_base + SDCMSC_NORMAL_INT_STATUS);
//	reg=cpu_to_le32(reg);
//	printk(KERN_ALERT "Test Int_status:0x%x\n", reg);
//	iowrite32(0, sdcmsc_base + SDCMSC_NORMAL_INT_STATUS);

	printk(KERN_ALERT "Ok at 1\n");
	//Send CMD0 to switch the card to idle state
	cmd = SDCMSC_COMMAND_CMDI(0);
	if(!sdcmsc_card_cmd(cmd, 0, NULL)) return 0;
	printk(KERN_ALERT "OK at 2\n");
	// Send CMD8 offering 2.7V to 3.6V range
	// If the card doesn't response it means either:
	// 1. Card supports v2.0 but can't communicate using current voltage levels
	// 2. Card doesn't support v2.0
	cmd = SDCMSC_COMMAND_CMDI(8) |
		SDCMSC_COMMAND_CICE | 
		SDCMSC_COMMAND_CIRC |
		SDCMSC_COMMAND_RTS_48;
	is_v20 = sdcmsc_card_cmd(cmd, 0x1AA, NULL);
	if(is_v20)
		 printk(KERN_ALERT "This is sd version 2.0\n");
	else
		printk(KERN_ALERT "This isn't sd version 2.0\n");
		
	do {
		reg = ioread32(sdcmsc_base + SDCMSC_CARD_STATUS);
		reg = cpu_to_le32(reg);
	} while(reg & SDCMSC_CARD_STATUS_CICMD);
	unsigned tCounter=0;
	// Repeat ACMD41 until card set the busy bit to 1
	// Since ACMD is an extended command, it must be preceded
	// by CMD55
/*	do {
		printk(KERN_ALERT "%d times\n",++tCounter);
		cmd = SDCMSC_COMMAND_CMDI(55) |
			SDCMSC_COMMAND_CICE |
			SDCMSC_COMMAND_CIRC |
			SDCMSC_COMMAND_RTS_48;
		if(!sdcmsc_card_cmd(cmd, 0, NULL)) return 0;

		cmd = SDCMSC_COMMAND_CMDI(41)
			| SDCMSC_COMMAND_RTS_48;
		arg = is_v20 ? 
			0x40FF8000 :
			0x00FF8000;
		if(!sdcmsc_card_cmd(cmd, arg, ®)) return 0;
	} while(!(reg & 0x80000000));
	printk(KERN_ALERT "Before is_sdhc!\n");
	is_sdhc = !!(reg & 0x40000000);   */
	is_sdhc=1;                  
	// Issue CMD2 to switch from ready state to ident. Unfortunately, it is
	// not possible to read whole CID because the command can be issued only
	// once, and the peripheral can store only 32bit of the command at once.
	cmd = SDCMSC_COMMAND_CMDI(2) |
		SDCMSC_COMMAND_RTS_136;
	if(!sdcmsc_card_cmd(cmd, 0, NULL)) return 0;
	printk(KERN_ALERT "after command 2\n");
	//Issue CMD3 to get RCA and switch from ident state to stby
	cmd = SDCMSC_COMMAND_CMDI(3) |
		SDCMSC_COMMAND_CICE |
		SDCMSC_COMMAND_CIRC |
		SDCMSC_COMMAND_RTS_48;
	if(!sdcmsc_card_cmd(cmd, 0, ®)) return 0;
	rca = reg & 0xFFFF0000;
	printk(KERN_ALERT "after command 3\n");
	//Calculate card capacity. Use information stored in CSD register.
	if(is_sdhc) {
		cmd = SDCMSC_COMMAND_CMDI(9) |
			SDCMSC_COMMAND_CMDW(1) |
			SDCMSC_COMMAND_RTS_136;
		if(!sdcmsc_card_cmd(cmd, rca, ®))  return 0;
		card_capacity = reg & 0x3F;
		card_capacity <<=16;

		cmd = SDCMSC_COMMAND_CMDI(9) |
			SDCMSC_COMMAND_CMDW(2) |
			SDCMSC_COMMAND_RTS_136;
		if(!sdcmsc_card_cmd(cmd, rca, ®)) return 0;
		reg >>=16;
		card_capacity |= reg;
		card_capacity +=1;
		card_capacity *=1000;
	}
	else {
		cmd = SDCMSC_COMMAND_CMDI(9) |
			SDCMSC_COMMAND_CMDW(1) |
			SDCMSC_COMMAND_RTS_136;
		if(!sdcmsc_card_cmd(cmd, rca, ®)) return 0;
		unsigned read_bl_len = (reg >>16) & 0x0F;
		unsigned c_size = reg & 0x3FF;
		c_size <<= 2;

		cmd = SDCMSC_COMMAND_CMDI(9) |
			SDCMSC_COMMAND_CMDW(2) |
			SDCMSC_COMMAND_RTS_136;
		if(!sdcmsc_card_cmd(cmd, rca, ®)) return 0;
		c_size |= (reg >>30) & 0x03;
		unsigned c_size_mult = (reg >> 15) & 0x07;
		card_capacity = c_size + 1;
		card_capacity *= 1 << (c_size_mult + 2);
		card_capacity *= 1 << (read_bl_len);
		card_capacity >>= 9;
	}

	// Put card in transfer state
	cmd = SDCMSC_COMMAND_CMDI(7) |
		SDCMSC_COMMAND_CICE |
		SDCMSC_COMMAND_CIRC |
		SDCMSC_COMMAND_RTS_48;
	if(!sdcmsc_card_cmd(cmd, rca, ®)) return 0;
	if(reg != 0x700) return 0;

	// Set block size to 512
	cmd = SDCMSC_COMMAND_CMDI(16) |
		SDCMSC_COMMAND_CICE |
		SDCMSC_COMMAND_CIRC |
		SDCMSC_COMMAND_RTS_48;
	if(!sdcmsc_card_cmd(cmd ,512, NULL)) return 0;

	// Set 4-bits bus mode
	cmd = SDCMSC_COMMAND_CMDI(55) |
		SDCMSC_COMMAND_CICE |
		SDCMSC_COMMAND_CIRC |
		SDCMSC_COMMAND_RTS_48;
	if(!sdcmsc_card_cmd(cmd, rca, NULL)) return 0;

	cmd = SDCMSC_COMMAND_CMDI(6) |
		SDCMSC_COMMAND_CICE |
		SDCMSC_COMMAND_CIRC |
		SDCMSC_COMMAND_RTS_48;
	if(!sdcmsc_card_cmd(cmd, 0x02, NULL)) return 0;

	return 1;
}

static int ocores_sdcmsc_init(void)
{
	int res;
	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
//	if(res) return res;

	printk(KERN_ALERT "test successfully before request_mem_region!\n");
	if(!request_mem_region(SDCMSC_BASE,SDCMSC_ADR_LEN,"ocores-sdcmsc"))
	{
		printk(KERN_ALERT "ocores-sdcmsc request_mem_region fails!");
		return -1;
	}
	printk(KERN_ALERT "test successfully before request_mem_region!\n");
	sdcmsc_base = ioremap(SDCMSC_BASE,SDCMSC_ADR_LEN);
	if(!sdcmsc_base)
	{
		printk(KERN_ALERT "ocores-sdcmsc ioremap failed!");
		return -1;
	}	
	printk(KERN_ALERT "test successfully after ioremap!\n");
	sdcmsc_card_init();
}

static void ocores_sdcmsc_exit(void)
{
	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
}


module_init(ocores_sdcmsc_init);
module_exit(ocores_sdcmsc_exit);



2>sdcmsc.h

/*
*Rill 130617
*[email protected]
*/


// SDCMSC address space
#define SDCMSC_BASE 0x9e000000
#define SDCMSC_ADR_LEN 0xa0
// Register space
#define SDCMSC_ARGUMENT           0x00
#define SDCMSC_COMMAND            0x04
#define SDCMSC_CARD_STATUS        0x08
#define SDCMSC_RESPONSE           0x0C
#define SDCMSC_CONTROLLER_SETTING 0x1C
#define SDCMSC_BLOCK_SIZE         0x20
#define SDCMSC_POWER_CONTROL      0x24
#define SDCMSC_SOFTWARE_RESET     0x28
#define SDCMSC_TIMEOUT            0x2C
#define SDCMSC_NORMAL_INT_STATUS  0x30
#define SDCMSC_ERROR_INT_STATUS   0x34
#define SDCMSC_NORMAL_INT_ENABLE  0x38
#define SDCMSC_ERROR_INT_ENABLE   0x3C
#define SDCMSC_CAPABILITY         0x48
#define SDCMSC_CLOCK_DIVIDER      0x4C
#define SDCMSC_BD_BUFFER_STATUS   0x50
#define SDCMSC_DAT_INT_STATUS     0x54
#define SDCMSC_DAT_INT_ENABLE     0x58
#define SDCMSC_BD_RX              0x60
#define SDCMSC_BD_TX              0x80

// SDCMSC_COMMAND bits
#define SDCMSC_COMMAND_CMDI(x) (x << 8)
#define SDCMSC_COMMAND_CMDW(x) (x << 6)
#define SDCMSC_COMMAND_CICE    0x10
#define SDCMSC_COMMAND_CIRC    0x08
#define SDCMSC_COMMAND_RTS_48  0x02
#define SDCMSC_COMMAND_RTS_136 0x01

//SDCMSC_CARD_STATUS bits
#define SDCMSC_CARD_STATUS_CICMD 0x01

// SDCMSC_NORMAL_INT_STATUS bits
#define SDCMSC_NORMAL_INT_STATUS_EI 0x8000
#define SDCMSC_NORMAL_INT_STATUS_CC 0x0001

// SDCMSC_DAT_INT_STATUS
#define SDCMSC_DAT_INT_STATUS_TRS 0x01




3>makefile


#
#Rill 130617
#[email protected]
#
ifneq ($(KERNELRELEASE), )
	obj-m := sdcmsc.o
else
KERNELDIR ?= /home/openrisc/soc-design/linux
PWD := $(shell pwd)
default:
	$(MAKE) -C $(KERNELDIR) M=$(PWD) modules ARCH=openrisc CROSS_COMPILE=or32-linux-
clean:
	rm -rf .*.cmd *.o *.mod.c *.ko .tm_versions *.order *.symvers
endif



4,验证结果

找一个小的sd卡,插到ORPSoC板子的SD卡插槽里面,

将驱动insmod到板子上,可以看到插入的SD卡的版本信息(v2.0),验证的后面几步没有成功,但是已经说明SD卡控制器是可以工作的,如下图:

OpenRisc-30-SD card controller模块分析与验证_第4张图片


5,需要注意的问题

在验证的过程中,一定注意以下两个问题:

1>大小端的问题:

ORPSoC的OpenRisc是大端的,但是ipcore内部是小端操作的,所以在控制ipcore时一定要做字节序(byteorder)的转换,这个问题在之前的blog中也提到过,调用函数如下:

cpu_to_le32() 和le32_to_cpu()

2>SD卡控制器命令的timeout:

尽量设置的大一点,如果太小,发送CMD就会超时(可以通过读取状态寄存器获得失败原因)。至于为什么出现这种情况,现在还不清楚。


6,eCos平台下的sd card controller驱动测试

上面都是基于linux的测试,目前,唯一支持orpsoc的sd card controller的驱动的平台就是eCos,所以,在eCos下测试一下是很有必要的。

参考http://blog.csdn.net/rill_zhen/article/details/9271721

if_sdcmsc.c驱动里面增加打印信息,可见,eCos下的初始化阶段可以通过!从下图可以看出,我当时测试的sd卡的容量(容量=capacity*512=386258*512=1977614336)是2G。

至于测试程序部分(fatfs1.c),mount动作失败,还需继续查找原因解决。

OpenRisc-30-SD card controller模块分析与验证_第5张图片

7,小结

本小节只是对sd卡控制器的硬件的一个简单验证,并不是一个完整的SD卡控制器的linux驱动,但是能确定硬件的正确性,意义也是很大的。至于如何编写符合linux MMC/SD框架的驱动,那是另外的话题了,并且有很多资料可以参考,这里就不再赘述。


8,附录

ecos下的sd card controller的driver:

1>代码获取

SVN地址:可以用svn客户端下载。也可以下载整个ecos-3.0工程,以获得更多信息。

http://opencores.org/ocsvn/openrisc/openrisc/trunk/rtos/ecos-3.0/packages/devs/disk/opencores/sdcmsc/current/src/if_sdcmsc.c

如果不想安装svn,可以通过wensvn访问,地址如下:

http://opencores.org/websvn,listing?repname=openrisc&path=%2Fopenrisc%2Ftrunk%2Frtos%2Fecos-3.0%2Fpackages%2Fdevs%2Fdisk%2Fopencores%2Fsdcmsc%2Fcurrent%2Fsrc%2F#path_openrisc_trunk_rtos_ecos-3.0_packages_devs_disk_opencores_sdcmsc_current_src_


2>codelist

如果连一个新窗口也懒得打开,那么版本为798时的代码如下:

if_sdcmsc.c:


//==========================================================================
//
//      if_sdcmsc.c
//
//      Provide a disk device driver for SDCard Mass Storage Controller
//
//==========================================================================
// ####ECOSGPLCOPYRIGHTBEGIN####                                            
// -------------------------------------------                              
// This file is part of eCos, the Embedded Configurable Operating System.   
// Copyright (C) 2004, 2006 Free Software Foundation, Inc.                  
//
// eCos is free software; you can redistribute it and/or modify it under    
// the terms of the GNU General Public License as published by the Free     
// Software Foundation; either version 2 or (at your option) any later      
// version.                                                                 
//
// eCos is distributed in the hope that it will be useful, but WITHOUT      
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or    
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License    
// for more details.                                                        
//
// You should have received a copy of the GNU General Public License        
// along with eCos; if not, write to the Free Software Foundation, Inc.,    
// 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.            
//
// As a special exception, if other files instantiate templates or use      
// macros or inline functions from this file, or you compile this file      
// and link it with other works to produce a work based on this file,       
// this file does not by itself cause the resulting work to be covered by   
// the GNU General Public License. However the source code for this file    
// must still be made available in accordance with section (3) of the GNU   
// General Public License v2.                                               
//
// This exception does not invalidate any other reasons why a work based    
// on this file might be covered by the GNU General Public License.         
// -------------------------------------------                              
// ####ECOSGPLCOPYRIGHTEND####                                              
//==========================================================================
//#####DESCRIPTIONBEGIN####
//
// Author:       Piotr Skrzypek
// Date:         2012-05-01
//
//####DESCRIPTIONEND####
//==========================================================================

#include <pkgconf/system.h>
#include <cyg/infra/cyg_type.h>
#include <cyg/infra/cyg_ass.h>
#include <cyg/infra/diag.h>
#include <cyg/hal/hal_arch.h>
#include <cyg/hal/hal_if.h>
#include <cyg/hal/hal_intr.h>
#include <string.h>
#include <errno.h>
#include <cyg/io/io.h>
#include <cyg/io/devtab.h>
#include <cyg/io/disk.h>

// Settings exported from CDL
#include <pkgconf/devs_disk_opencores_sdcmsc.h>

// SDCMSC address space
#define SDCMSC_BASE 0x9e000000

// Register space
#define SDCMSC_ARGUMENT           0x00
#define SDCMSC_COMMAND            0x04
#define SDCMSC_CARD_STATUS        0x08
#define SDCMSC_RESPONSE           0x0C
#define SDCMSC_CONTROLLER_SETTING 0x1C
#define SDCMSC_BLOCK_SIZE         0x20
#define SDCMSC_POWER_CONTROL      0x24
#define SDCMSC_SOFTWARE_RESET     0x28
#define SDCMSC_TIMEOUT            0x2C
#define SDCMSC_NORMAL_INT_STATUS  0x30
#define SDCMSC_ERROR_INT_STATUS   0x34
#define SDCMSC_NORMAL_INT_ENABLE  0x38
#define SDCMSC_ERROR_INT_ENABLE   0x3C
#define SDCMSC_CAPABILITY         0x48
#define SDCMSC_CLOCK_DIVIDER      0x4C
#define SDCMSC_BD_BUFFER_STATUS   0x50
#define SDCMSC_DAT_INT_STATUS     0x54
#define SDCMSC_DAT_INT_ENABLE     0x58
#define SDCMSC_BD_RX              0x60
#define SDCMSC_BD_TX              0x80

// SDCMSC_COMMAND bits
#define SDCMSC_COMMAND_CMDI(x) (x << 8)
#define SDCMSC_COMMAND_CMDW(x) (x << 6)
#define SDCMSC_COMMAND_CICE    0x10
#define SDCMSC_COMMAND_CIRC    0x08
#define SDCMSC_COMMAND_RTS_48  0x02
#define SDCMSC_COMMAND_RTS_136 0x01

//SDCMSC_CARD_STATUS bits
#define SDCMSC_CARD_STATUS_CICMD 0x01

// SDCMSC_NORMAL_INT_STATUS bits
#define SDCMSC_NORMAL_INT_STATUS_EI 0x8000
#define SDCMSC_NORMAL_INT_STATUS_CC 0x0001

// SDCMSC_DAT_INT_STATUS
#define SDCMSC_DAT_INT_STATUS_TRS 0x01

typedef struct cyg_sdcmsc_disk_info_t {
	int is_v20;
	int is_sdhc;
	cyg_uint32 rca;
	int connected;
} cyg_sdcmsc_disk_info_t;

static int sdcmsc_card_cmd(cyg_uint32 cmd, 
			   cyg_uint32 arg, 
			   cyg_uint32 *response) {

	// Send command to card
	HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_COMMAND, cmd);
	HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_ARGUMENT, arg);

	// Wait for response
	cyg_uint32 reg;
	cyg_uint32 mask = SDCMSC_NORMAL_INT_STATUS_EI | 
			  SDCMSC_NORMAL_INT_STATUS_CC;

	do {
		HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_NORMAL_INT_STATUS, reg);
	} while(!(reg & mask));
	HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_NORMAL_INT_STATUS, 0);

	// Optionally read response register
	if(response) {
		HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_RESPONSE, *response);
	}

	// Check for errors
	if(reg & SDCMSC_NORMAL_INT_STATUS_EI) {
		HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_ERROR_INT_STATUS, reg);
		if(reg & (1 << 3)) diag_printf("Command index error\n");
		if(reg & (1 << 1)) diag_printf("Command CRC error\n");
		if(reg & (1 << 0)) diag_printf("Command timeout\n");
		HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_ERROR_INT_STATUS, 0);
		return 0;
	}
	else {
		return 1;
	}
}

// Card initialization and identification implemented according to
// Physical Layer Simplified Specification Version 3.01
static int sdcmsc_card_init(cyg_sdcmsc_disk_info_t *data,
			    char *serial,
			    char *firmware_rev,
			    char *model_num,
			    cyg_uint32 *capacity) {

	cyg_uint32 reg;
	cyg_uint32 cmd;
	cyg_uint32 arg;

	// Send CMD0 to switch the card to idle state
	cmd = SDCMSC_COMMAND_CMDI(0);
	if(!sdcmsc_card_cmd(cmd, 0, NULL)) return 0;

	// Send CMD8 offering 2.7V to 3.6V range
	// If the card doesn't responde it means either:
	// 1. Card supports v2.0 but can't communicate using
	//    current voltage levels
	// 2. Card does not support v2.0
	cmd = SDCMSC_COMMAND_CMDI(8) | 
	      SDCMSC_COMMAND_CICE |
	      SDCMSC_COMMAND_CIRC |
	      SDCMSC_COMMAND_RTS_48;
	data->is_v20 = sdcmsc_card_cmd(cmd, 0x1AA, NULL);

	do {
		HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_CARD_STATUS, reg);
	} while(reg & SDCMSC_CARD_STATUS_CICMD);

	// Repeat ACMD41 until card set the busy bit to 1
	// Since ACMD is an extended command, it must be preceded
	// by CMD55
	do {
		cmd = SDCMSC_COMMAND_CMDI(55) | 
		      SDCMSC_COMMAND_CICE |
		      SDCMSC_COMMAND_CIRC |
		      SDCMSC_COMMAND_RTS_48;
		if(!sdcmsc_card_cmd(cmd, 0, NULL)) return 0;

		cmd = SDCMSC_COMMAND_CMDI(41) |
		      SDCMSC_COMMAND_RTS_48;
		arg = data->is_v20 ? 
		      0x40FF8000 : 
		      0x00FF8000;
		if(!sdcmsc_card_cmd(cmd, arg, ®)) return 0;

	} while(!(reg & 0x80000000));

	data->is_sdhc = !!(reg & 0x40000000);

	// Issue CMD2 to switch from ready state to ident. Unfortunately, it is
	// not possible to read whole CID because the command can be issued only
	// once, and the peripheral can store only 32bit of the command at once.
	cmd = SDCMSC_COMMAND_CMDI(2) |
	      SDCMSC_COMMAND_RTS_136;
	if(!sdcmsc_card_cmd(cmd, 0, NULL)) return 0;

	// Issue CMD3 to get RCA and switch from ident state to stby.
	cmd = SDCMSC_COMMAND_CMDI(3) |
	      SDCMSC_COMMAND_CICE |
	      SDCMSC_COMMAND_CIRC |
	      SDCMSC_COMMAND_RTS_48;
	if(!sdcmsc_card_cmd(cmd, 0, ®)) return 0;
	data->rca = reg & 0xFFFF0000;

	// Calculate card capacity. Use information stored in CSD register.
	cyg_uint32 card_capacity;
	if(data->is_sdhc) {
		cmd = SDCMSC_COMMAND_CMDI(9) |
		      SDCMSC_COMMAND_CMDW(1) |
		      SDCMSC_COMMAND_RTS_136;
		if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0;
		card_capacity = reg & 0x3F;
		card_capacity <<= 16;

		cmd = SDCMSC_COMMAND_CMDI(9) |
		      SDCMSC_COMMAND_CMDW(2) |
		      SDCMSC_COMMAND_RTS_136;
		if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0;
		reg >>= 16;
		card_capacity |= reg;
		card_capacity += 1;
		card_capacity *= 1000;
	}
	else {
		cmd = SDCMSC_COMMAND_CMDI(9) |
		      SDCMSC_COMMAND_CMDW(1) |
		      SDCMSC_COMMAND_RTS_136;
		if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0;
		cyg_uint32 read_bl_len = (reg >> 16) & 0x0F;
		cyg_uint32 c_size = reg & 0x3FF;
		c_size <<= 2;

		cmd = SDCMSC_COMMAND_CMDI(9) |
		      SDCMSC_COMMAND_CMDW(2) |
		      SDCMSC_COMMAND_RTS_136;
		if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0;
		c_size |= (reg >> 30) & 0x03;
		cyg_uint32 c_size_mult = (reg >> 15) & 0x07;
		card_capacity = c_size + 1;
		card_capacity *= 1 << (c_size_mult + 2);
		card_capacity *= 1 << (read_bl_len);
		card_capacity >>= 9;
	}

	// Fill disk identification struct using information in CID register
	// use OEM/APPlication ID field to fill model_num,
	// Product revision field to fill firmware_rev,
	// and Product serial number to field to fill serial
	cmd = SDCMSC_COMMAND_CMDI(10) |
	      SDCMSC_COMMAND_CMDW(0) |
	      SDCMSC_COMMAND_RTS_136;
	if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0;
	model_num[0] = (reg >> 16) & 0xFF;
	model_num[1] = (reg >> 8) & 0xFF;
	model_num[2] = 0;

	cmd = SDCMSC_COMMAND_CMDI(10) |
	      SDCMSC_COMMAND_CMDW(2) |
	      SDCMSC_COMMAND_RTS_136;
	if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0;
	firmware_rev[0] = (reg >> 24) & 0xFF;
	firmware_rev[1] = 0;
	serial[0] = (reg >> 16) & 0xFF;
	serial[1] = (reg >> 8) & 0xFF;
	serial[2] = reg & 0xFF;

	cmd = SDCMSC_COMMAND_CMDI(10) |
	      SDCMSC_COMMAND_CMDW(3) |
	      SDCMSC_COMMAND_RTS_136;
	if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0;
	serial[3] = (reg >> 24) & 0xFF;

	// Put card in transfer state 
	cmd = SDCMSC_COMMAND_CMDI(7) |
	      SDCMSC_COMMAND_CICE |
	      SDCMSC_COMMAND_CIRC |
	      SDCMSC_COMMAND_RTS_48;
	if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0;
	if(reg != 0x700) return 0;

	// Set block size to 512
	cmd = SDCMSC_COMMAND_CMDI(16) |
	      SDCMSC_COMMAND_CICE |
	      SDCMSC_COMMAND_CIRC |
	      SDCMSC_COMMAND_RTS_48;
	if(!sdcmsc_card_cmd(cmd, 512, NULL)) return 0;

	// Set 4-bits bus mode
	cmd = SDCMSC_COMMAND_CMDI(55) |
	      SDCMSC_COMMAND_CICE |
	      SDCMSC_COMMAND_CIRC |
	      SDCMSC_COMMAND_RTS_48;
	if(!sdcmsc_card_cmd(cmd, data->rca, NULL)) return 0;

	cmd = SDCMSC_COMMAND_CMDI(6) |
	      SDCMSC_COMMAND_CICE |
	      SDCMSC_COMMAND_CIRC |
	      SDCMSC_COMMAND_RTS_48;
	if(!sdcmsc_card_cmd(cmd, 0x02, NULL)) return 0;

	return 1;
}

static int sdcmsc_card_queue(cyg_sdcmsc_disk_info_t *data, 
			int direction_transmit,
			int block_addr,
			cyg_uint32 buffer_addr) {

        // SDSC cards use byte addressing, while SDHC use block addressing.
        // It is therefore required to multiply the address by 512 if
        // we are dealing with SDSC card, to remain compatible with the API.
	if(!data->is_sdhc) {
		block_addr <<= 9;
	}

	if(direction_transmit) {
		HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_BD_TX, buffer_addr);
		HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_BD_TX, block_addr);
	}
	else {
		HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_BD_RX, buffer_addr);
		HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_BD_RX, block_addr);
	}

	// Now wait for the response
	cyg_uint32 reg;
	do {
		HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_DAT_INT_STATUS, reg);
	} while(!reg);
	HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_DAT_INT_STATUS, 0);

	// Check for errors
	if(reg == SDCMSC_DAT_INT_STATUS_TRS) {
		return 1;
	}
	else {
		if(reg & (1 << 5)) diag_printf("Transmission error\n");
		if(reg & (1 << 4)) diag_printf("Command error\n");
		if(reg & (1 << 2)) diag_printf("FIFO error\n");
		if(reg & (1 << 1)) diag_printf("Retry error\n");
		return 0;
	}
}

// This is an API function. Is is called once, in the beginning
static cyg_bool sdcmsc_disk_init(struct cyg_devtab_entry* tab) {

	// Set highest possible timeout
	HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_TIMEOUT, 0xFFFE);

	// Reset the peripheral
	HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_SOFTWARE_RESET, 1);
	HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_CLOCK_DIVIDER, 2);
	HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_SOFTWARE_RESET, 0);

	// Call upper level
	disk_channel* ch = (disk_channel*) tab->priv;
	return (*ch->callbacks->disk_init)(tab);
}

// This function is called when user mounts the disk
static Cyg_ErrNo sdcmsc_disk_lookup(struct cyg_devtab_entry** tab, 
				    struct cyg_devtab_entry *sub_tab, 
				    const char* name) {

	disk_channel *ch = (disk_channel*) (*tab)->priv;
	cyg_sdcmsc_disk_info_t *data = (cyg_sdcmsc_disk_info_t*) ch->dev_priv;

	// If the card was not initialized yet, it's time to do it
	// and call disk_connected callback
	if(!data->connected) {

		cyg_disk_identify_t id;

		// Pass dummy CHS geometry and hope the upper level 
		// will use LBA mode. To guess CHS we would need to
		// analyze partition table and confront LBA and CHS
		// addresses. And it would work only if proper LBA
		// field is stored in MBR. Is is definitely something
		// that should be done by upper level.
		id.cylinders_num = 1;
		id.heads_num = 1;
		id.sectors_num = 1;

		id.phys_block_size = 1;
		id.max_transfer = 512;

		// Initialize the card
		data->connected = sdcmsc_card_init(data,
						   id.serial,
						   id.firmware_rev,
						   id.model_num,
						   &id.lba_sectors_num);

		if(data->connected) {
			// Let upper level know there is a new disk
			(*ch->callbacks->disk_connected)(*tab, &id);
		}
	}

	// Call upper level
	return (*ch->callbacks->disk_lookup)(tab, sub_tab, name);
}

// API function to read block from the disk
static Cyg_ErrNo sdcmsc_disk_read(disk_channel* ch, 
				  void* buf, 
				  cyg_uint32 blocks, 
				  cyg_uint32 first_block) {

	cyg_sdcmsc_disk_info_t *data = (cyg_sdcmsc_disk_info_t*) ch->dev_priv;

	int i;
	int result;
	cyg_uint32 reg;
	for(i = 0; i < blocks; i++) {

		// Check for free receive buffers
		HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_BD_BUFFER_STATUS, reg);
		reg >>= 8;
		reg &= 0xFF;
		if(reg == 0) {
			return -EIO;
		}

		result = sdcmsc_card_queue(data, 0, first_block, (cyg_uint32) buf);
		if(!result) {
			return -EIO;
		}
	}

	return ENOERR;

}

// API function to write block to disk
static Cyg_ErrNo sdcmsc_disk_write(disk_channel* ch, 
				   const void* buf, 
				   cyg_uint32 blocks, 
				   cyg_uint32 first_block) {

	cyg_sdcmsc_disk_info_t *data = (cyg_sdcmsc_disk_info_t*) ch->dev_priv;

	int i;
	int result;
	cyg_uint32 reg;
	for(i = 0; i < blocks; i++) {

		// Check for free transmit buffers
		HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_BD_BUFFER_STATUS, reg);
		reg &= 0xFF;
		if(reg == 0) {
			return -EIO;
		}

		result = sdcmsc_card_queue(data, 1, first_block, (cyg_uint32) buf);
		if(!result) {
			return -EIO;
		}
	}

	return ENOERR;

}

// API function to fetch driver configuration and disk info.
static Cyg_ErrNo sdcmsc_disk_get_config(disk_channel* ch, 
					cyg_uint32 key, 
					const void* buf, 
					cyg_uint32* len) {

	CYG_UNUSED_PARAM(disk_channel*, ch);
	CYG_UNUSED_PARAM(cyg_uint32, key);
	CYG_UNUSED_PARAM(const void*, buf);
	CYG_UNUSED_PARAM(cyg_uint32*, len);

	return -EINVAL;
}

// API function to update driver status information.
static Cyg_ErrNo sdcmsc_disk_set_config(disk_channel* ch, 
					cyg_uint32 key, 
					const void* buf, 
					cyg_uint32* len) {

	cyg_sdcmsc_disk_info_t *data = (cyg_sdcmsc_disk_info_t*) ch->dev_priv;

	if(key == CYG_IO_SET_CONFIG_DISK_UMOUNT) {
	        if(ch->info->mounts == 0) {
			data->connected = false;
			return (ch->callbacks->disk_disconnected)(ch);
	        }
		else {
			return ENOERR;
		}
	}
	else {
		return -EINVAL;
	}

}

// Register the driver in the system

static cyg_sdcmsc_disk_info_t cyg_sdcmsc_disk0_hwinfo = {
	.connected = 0
};

DISK_FUNS(cyg_sdcmsc_disk_funs,
	  sdcmsc_disk_read,
	  sdcmsc_disk_write,
	  sdcmsc_disk_get_config,
	  sdcmsc_disk_set_config
);


DISK_CONTROLLER(cyg_sdcmsc_disk_controller_0, cyg_sdcmsc_disk0_hwinfo);

DISK_CHANNEL(cyg_sdcmsc_disk0_channel,
             cyg_sdcmsc_disk_funs,
             cyg_sdcmsc_disk0_hwinfo,
             cyg_sdcmsc_disk_controller_0,
             true, //mbr supported
             4 //partitions
);

BLOCK_DEVTAB_ENTRY(cyg_sdcmsc_disk0_devtab_entry,
		   CYGDAT_DEVS_DISK_OPENCORES_SDCMSC_DISK0_NAME,
		   0,
		   &cyg_io_disk_devio,
		   &sdcmsc_disk_init,
		   &sdcmsc_disk_lookup,
		   &cyg_sdcmsc_disk0_channel);

// EOF if_sdcmsc.c



可以参考这个代码来完成后续的符合linux下MMC/SD framework的驱动的编写工作。

enjoy!


你可能感兴趣的:(OpenRisc-30-SD card controller模块分析与验证)