- Python Day58
别勉.
python机器学习python信息可视化数据分析
Task:1.时序建模的流程2.时序任务经典单变量数据集3.ARIMA(p,d,q)模型实战4.SARIMA摘要图的理解5.处理不平稳的2种差分a.n阶差分—处理趋势b.季节性差分—处理季节性建立一个ARIMA模型,通常遵循以下步骤:数据可视化:观察原始时间序列图,判断是否存在趋势或季节性。平稳性检验:对原始序列进行ADF检验。如果p值>0.05,说明序列非平稳,需要进行差分。确定差分次数d:进行
- Python Day44
别勉.
python机器学习python开发语言
Task:1.预训练的概念2.常见的分类预训练模型3.图像预训练模型的发展史4.预训练的策略5.预训练代码实战:resnet181.预训练的概念预训练(Pre-training)是指在大规模数据集上,先训练模型以学习通用的特征表示,然后将其用于特定任务的微调。这种方法可以显著提高模型在目标任务上的性能,减少训练时间和所需数据量。核心思想:在大规模、通用的数据(如ImageNet)上训练模型,学习丰
- 零基础起步:基于GpuGeek的文本生成模型实战
昊昊该干饭了
人工智能nlp深度学习gpu算力gru
在自然语言处理(NLP)领域,文本生成任务广泛应用于问答系统、智能摘要、内容创作等方向。本文将带领读者使用GpuGeek平台,从注册、上传数据到实例部署与训练,完整构建一个基于GPT2模型的文本生成系统,实战掌握AI模型的云端开发流程。目录一、GpuGeek平台使用流程详解1.注册与登录2.数据上传3.创建训练实例4.启动与使用实例5.关闭实例(手动&自动)二、文本生成实战任务:微调GPT-21.
- 并发与并行:python多线程详解
m_merlon
python服务器Python进阶教程python
简介多进程和多线程都可以执行多个任务,线程是进程的一部分。线程的特点是线程之间可以共享内存和变量,资源消耗少,缺点是线程之间的同步和加锁比较麻烦。在cpython中,截止到3.12为止依然存在全局解释器锁(GIL),不能发挥多核的优势,因此python多线程更适合IO密集型任务并发提高效率,CPU密集型任务推荐使用多进程并行解决。注:此说法仅适用于python(如:c++的多线程可以利用到多核并行
- python协程与异步并发,同步与阻塞,异步与非阻塞,Python异步IO、协程与同步原语介绍,协程的优势和劣势
网小鱼的学习笔记
Pythonpython服务器开发语言
协程与异步软件系统的并发使用异步IO,无非是我们提的软件系统的并发,这个软件系统,可以是网络爬虫,也可以是web服务等并发的方式有多种,多线程,多进程,异步IO等多线程和多进程更多应用于CPU密集型的场景,比如科学计算的事件都消耗在CPU上面,利用多核CPU来分担计算任务多线程和多进程之间的场景切换和通讯代价很高,不适合IO密集型的场景,而异步IO就是非常适合IO密集型的场景,例如网络爬虫和web
- 使用Python和FFmpeg实现RGB到YUV444的转换
追逐程序梦想者
ffmpegpython开发语言
使用Python和FFmpeg实现RGB到YUV444的转换如果你需要将RGB图像转换为YUV444格式的图像,那么本文将为你提供一个简单且可靠的方法。我们将使用Python和FFmpeg来完成这个任务。首先,让我们了解一下什么是RGB和YUV。RGB表示红、绿、蓝三种颜色的组合,是最常见的图像格式之一。另一方面,YUV是一种亮度-色度编码,用于视频压缩和传输,它将图像分成明亮度(Y)和色度(U和
- 做独立站只需1小时学会搭建独立站
Bowcen
独立站
独立站搭建攻略:开启线上业务的完整指南在数字化浪潮中,独立站已成为企业和个人拓展业务、塑造品牌的有力工具。无论你是想开展跨境电商,还是打造专业的品牌展示平台,搭建独立站都是关键的第一步。以下将为你详细介绍搭建独立站的全流程攻略,助你顺利开启线上之旅。一、明确建站目标与受众(一)确定网站类型与目标在着手搭建独立站之前,首要任务是明确建站目标与网站类型。网站类型大致可分为电商站、品牌官网、内容驱动型网
- 2025.06.11华为暑期实习机试真题【物流运输】Java/Python/C++/JS/C 实现
MISAYAONE
python华为java华为暑期实习机试c++
目录题目思路Code题目物流公司每天都要处理很多物流的运输工作,整个城市共有N个地点。共有N-1条公路,每2个地点之间都能通过公路连通。物流公司总部位于1号地点。今天有一辆物流运偷车共有M条物流运输任务,物流运输车每天的工作流程如下:先要从总部出发去收取所有的寄件货物,收到所有货物后回到总部扫描货物,再从总部出发将货物送至所有的送件地址,送完后最终回到总部,算作完成了今天的运输工作,请问该辆物流运
- CNC编程实战解析:钻孔与攻螺纹技巧
Salton Z
CNC编程钻孔循环攻螺纹循环G81G82
背景简介在现代制造业中,CNC(计算机数控)机床扮演着至关重要的角色。通过精确的编程,CNC机床能够在材料上完成复杂的加工任务。本章将深入探讨CNC编程中的两个核心环节:钻孔与攻螺纹,通过具体程序实例,揭示如何编写高效准确的CNC程序。G81与G84循环程序解析首先,我们来看G81钻孔循环和G84攻螺纹循环的程序示例。这些循环是CNC编程中常用的指令,能够简化钻孔和攻螺纹的编程过程。G81钻孔循环
- (论文总结)思维链激发LLM推理能力
靈镌sama
论文解读人工智能
研究背景&动机背景:扩大模型规模已被证实具有提升模型性能和模型效率的功效,但是LLM对于完成推理、算术任务仍有较大不足。动机:从之前的应用和研究中得知,可以用生成自然语言解释、使用神经符号等形式语言的方法来提高大模型的算术推理能力,当时采用了从头预训练和微调模型的方法,耗费的成本较多;而且大模型具有根据少量文本提示进行上下文少样本学习的能力,使用少量输入输出示例即可提高LLM的推理性能,而不必对单
- 8、 探讨排序算法及其实际应用
侯昂
排序算法插入排序快速排序
探讨排序算法及其实际应用1.排序算法的重要性排序算法在计算机科学中扮演着至关重要的角色。无论是日常生活中常见的任务,还是复杂的数据处理工作,排序算法都能帮助我们更有效地管理和检索信息。以下是几个实际应用场景:字典中的单词:字典中的单词按顺序排列,忽略大小写差异。这使得查找特定单词变得非常容易。目录中的文件:目录中的文件通常按排序顺序列出,方便用户快速找到所需文件。书籍索引:一本书的索引是排序过的,
- 阿里云OSS跨账号迁移过程
IT_狂奔者
《玩转Linux终极指南》阿里云云计算对象存储OSS
阿里云OSS跨账号迁移过程关于OSS在线迁移服务的更新说明旧版在线迁移已停止服务,用户需切换至新版在线迁移。与旧版相比,新版在线迁移的主要区别在于身份验证方式的调整。新版不再使用AK/AS(AccessKeyID和AccessKeySecret)进行认证,而是采用了角色授权机制。这一变化旨在提升安全性和简化权限管理。用户需根据新的认证方式进行配置,以确保迁移任务的正常运行。准备工作本文以标准存储进
- 22-4 SQL注入攻击 - post 基于报错的注入
技术探索
Web安全攻防全解析sql数据库
1、post基于错误单引号注入回显分析注入点位置已经发生变化。在浏览器中,无法直接查看和修改注入点。不过,可以通过使用相应的插件来完成修改任务。修改方法:(一般是网站前端做了限制,我们才需要用到bp绕开限制)要修改Less11注入点的请求,可以使用BurpSuite工具来捕获请求包,并使用其中的"Repeater"功能来进行修改。具体操作步骤如下:首先打开BurpSuite并设置代理,然后在浏览器
- 教育技术学读计算机论文的提示词
东方-教育技术博主
学术学习相关AI
角色:你是一位经验丰富的计算机专业教授,擅长用通俗易懂的语言向初学者解释复杂概念。我现在正在学习阅读计算机科学领域的算法论文,但我的基础比较薄弱(了解编程基础如变量、循环、函数,了解一点数据结构和算法概念如数组、链表、排序,但对高级术语和数学证明不熟悉)。同时又是一个教育技术学教授。任务:请帮我解释以下论文内容中我不理解的部分。如果遇到初学者可能不懂的地方,我需要你用最清晰、最简洁、最易懂的方式解
- 使用GPU进行机器学习训练时,如果GPU-Util计算核心满载工作但是显存占用较少,应该如何优化?
十子木
机器学习深度学习人工智能
是否需要优化?如果任务运行正常:无需干预(GPU设计本就是优先榨干计算性能)。如果出现卡顿或效率低下:增大batch_size:提升显存占用,减少数据搬运次数(但需避免OOM)。启用混合精度:torch.cuda.amp可减少显存占用并加速计算。检查CPU到GPU的数据流:避免频繁的小数据拷贝(如DataLoader的num_workers设置)。
- DAY 40 训练和测试的规范写法
acstdm
python打卡60天人工智能深度学习机器学习
目录一、单通道图片的规范写法图像任务中的张量形状NLP任务中的张量形状1.Flatten操作2.view/reshape操作总结二、彩色图片的规范写法知识点回顾:彩色和灰度图片测试和训练的规范写法:封装在函数中展平操作:除第一个维度batchsize外全部展平dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout昨天我们介绍了图像数据的格式以及模型定义的过程,发现和之前
- 6,FreeRTOS临界区代码保护与任务调度器的挂起与恢复
自激振荡器
FreeRTOS学习笔记单片机stm32嵌入式硬件freeRTOSFreeRTOS
一、临界区代码保护如果我们想在执行某段代码时不被中断打断,此时需要进行临界区代码保护。在临界区内关闭中断,临界区结束后开启中断。需要注意的是临界区的进入和退出需要成对出现,如果进入两次,那么需要退出两次才可以成功开启中断。注:本实验基于正点原子FreeRTOS教程的学习总结。1..所需API函数介绍taskENTER_CRITICAL函数用来进入临界区。在任务中调用。#definetaskENTE
- 7,FreeRTOS列表与列表项的插入删除
自激振荡器
FreeRTOS学习笔记单片机stm32嵌入式硬件freeRTOSFreeRTOS
一、实验目标创建三个动态任务,栈空间大小均为128字。startTask、Task1、Task2。startTask仅运行一次,负责task1、task2任务的创建,startTask任务的删除。Task1负责初始化列表、列表项123,并进行列表项的插入实验与删除实验。Task2负责5S闪烁一次LED0,用于指示系统的运行状态。注:本实验基于正点原子FreeRTOS教程的学习总结。二、实验准备1.
- 【大模型学习 | BLIP原理】
九年义务漏网鲨鱼
pytorch人工智能深度学习大模型多模态
BLIP:BootstrappingLanguage-ImagePre-trainingforUnifiedVision-LanguageUnderstandingandGeneration作者指出,现有的视觉-语言预训练(Vision-LanguagePre-training,VLP)模型在语言理解与生成任务上难以同时取得优异表现:一方面,基于编码器(encoder-based)的模型在生成任务
- D-FINE使用pth权重批量推理可视化图片
悠悠海风
代码调试深度学习人工智能python目标检测计算机视觉
关于D-FINE相关的内容可参考下面这篇博客:论文解读:ICLR2025|D-FINE_d-fine:redefineregressiontaskindetrsasfine--CSDN博客文章浏览阅读949次,点赞18次,收藏28次。D-FINE是一款功能强大的实时物体检测器,它将DETRs中的边界框回归任务重新定义为细粒度分布细化(FDR),并引入了全局最优定位自蒸馏(GO-LSD),在不引入额
- [AI笔记]-LLM中的3种架构:Encoder-Only、Decoder-Only、Encoder-Decoder
Micheal超
AI笔记人工智能笔记架构
一、概述架构描述特点案例Encoder-Only仅包含编码器部分这类模型主要专注输入数据中提取特征或上下文信息,通常不需要生成新内容、只需要理解输入的任务,如:分类(文本分类、情感分析等)、信息抽取、序列标注等。在这种架构中,所有的注意力机制和网络层都集中在编码输入数据上,其输出通常是关于输入的复杂语义表示。谷歌的BERT、智谱AI发布的第四代基座大语言模型GLM4Decoder-Only也被称为
- 长尾形分布论文速览三十篇【60-89】
木木阳
Long-tailed人工智能
长尾形分布速览(60-89)这些研究展示了LLMs在长尾数据分布、持续学习、异常检测、联邦学习、对比学习、知识图谱、推荐系统、多目标跟踪、标签修复、对象检测、医疗生物医学以及其他应用中的广泛应用。通过优化和创新,LLMs在这些领域展现了卓越的性能,并为解决长尾问题提供了有效的工具和方法。1.长尾持续学习与对抗学习长尾持续学习(Paper60):通过优化器状态重用来减少遗忘,提高在长尾任务中的持续学
- CVPR2024无监督Unsupervised论文17篇速览
木木阳
CVPR无监督unsupervised
Paper1GuidedSlotAttentionforUnsupervisedVideoObjectSegmentation摘要小结:这段话的中文翻译如下:无监督视频对象分割旨在分割视频序列中最突出的对象。然而,复杂的背景和多个前景对象的存在使这项任务变得具有挑战性。为了解决这一问题,我们提出了一种引导式槽注意力网络,以加强空间结构信息并获得更好的前景-背景分离。初始化时带有查询引导的前景和背景
- 扣带回灰质体积:双任务步态与痴呆发病关联的关键中介
楚山之石
学习图像处理科技人工智能mr
扣带回灰质体积介导双任务步态与痴呆发病的关联研究背景与核心问题随着全球人口老龄化,痴呆已成为重大公共卫生挑战,而轻度认知障碍(MCI)作为正常认知与痴呆的过渡状态,是早期干预的关键窗口。双任务步态测试(行走时执行认知任务)中出现的高双任务成本(DTC,即步态速度较单任务时减慢≥20%),已被证实与MCI患者进展为痴呆的风险升高相关,但这一关联的神经机制尚不明确。本研究旨在探索脑灰质体积减少和运动皮
- 提示技术系列——主动提示
AIGC包拥它
提示技术人工智能promptpythonlangchain
什么是提示技术?提示技术是实现提示工程目标的具体技术手段,是提示工程中的“工具库”。什么又是提示工程?提示工程是指通过设计、优化和迭代输入到大语言模型(LLM)的提示(Prompt),系统性提升模型输出质量(如相关性、准确性、可控性)的实践领域。它是一个覆盖全流程的方法论,包括:明确目标任务(如生成教学内容、问答、翻译);设计提示结构(如指令、上下文、示例);选择模型与参数(如温度、top_p);
- SOTA是什么意思?
有奇妙能力吗
AI知识分享自然语言处理人工智能ai
最近看到一篇关于Transformer模型的论文,谷歌推出的BERT模型在11项NLP(naturallanguageprocessing)任务中夺得SOTA结果,引爆了整个NLP界。而Transformer是BERT取得成功的一个关键因素。谷歌的Transformer模型最早用于机器翻译任务,当时达到了SOTA效果。那么文中的SOTA效果,SOTA结果是什么意思呢?这里就来简单介绍一下定义:SO
- E函数.js
是紫焅呢
javascript开发语言ecmascript青少年编程前端visualstudiocode
前言:函数是构建强大而灵活应用程序的基石。它们不仅是代码执行的基本单元,更是实现模块化、可复用性和简洁性的关键。目录一、函数是个啥?简单来说就是“代码小跟班”二、定义函数给小跟班安排任务三、调用函数指挥小跟班干活儿四、参数给小跟班的“任务提示卡”五、返回值小跟班的“任务成果”六、函数的实际应用小跟班大显身手总结函数是你的编程小跟班一、函数是个啥?简单来说就是“代码小跟班”函数,说白了就是一段能完成
- workflow的可编排协作模式
思绪漂移
人工智能agentworkflow模式
Workflow的可编排协作模式在AI工作流设计中,协作模式的选择直接影响系统效率和结果质量。本文将系统分析6种主流协作模式,探讨选择方案与适合场景。一、传统单一模式特点:使用标准框架进行线性编排所有任务按固定顺序执行适合简单、确定性强的流程适用场景:规则明确、步骤固定的业务流程自动化二、路由模式核心机制:LLM先识别用户意图根据意图路由到对应处理模块优势:意图识别准确率高资源分配精准典型应用:客
- .NET 8/9异步编程黄金法则:零缺陷与性能飞跃实战
——从“未等待任务”到线程池优化的深度避坑指南异步编程的“暗礁”与.NET8/9的破局之道在.NET应用中,异步编程是提升响应性和资源利用率的核心技术,但不当使用可能导致线程死锁、内存泄漏、未捕获异常等致命问题。.NET8/9通过托管线程池优化、服务器GC改进和编译器增强,为开发者提供了更安全高效的异步编程环境。本文将通过10个真实场景、20段代码示例和深度性能分析,手把手教你规避异步开发的常见陷
- Java线程池源码分析,深度解读
努力的橙子go
java开发语言
前言本文将深入分析Java线程池的源码,包括线程池的创建、任务提交、工作线程的执行和线程池的关闭等过程。通过对线程池源码的解析,我们能够更好地理解线程池的原理和机制,为我们在实际开发中合理使用线程池提供指导。文章内容较长,建议找个安静的环境慢慢细读。线程池简介概念在传统的多线程编程中,每次需要执行任务时都会创建一个新的线程,任务执行完毕后再销毁该线程。这种方式存在一些问题,例如频繁创建和销毁线程会
- 书其实只有三类
西蜀石兰
类
一个人一辈子其实只读三种书,知识类、技能类、修心类。
知识类的书可以让我们活得更明白。类似十万个为什么这种书籍,我一直不太乐意去读,因为单纯的知识是没法做事的,就像知道地球转速是多少一样(我肯定不知道),这种所谓的知识,除非用到,普通人掌握了完全是一种负担,维基百科能找到的东西,为什么去记忆?
知识类的书,每个方面都涉及些,让自己显得不那么没文化,仅此而已。社会认为的学识渊博,肯定不是站在
- 《TCP/IP 详解,卷1:协议》学习笔记、吐槽及其他
bylijinnan
tcp
《TCP/IP 详解,卷1:协议》是经典,但不适合初学者。它更像是一本字典,适合学过网络的人温习和查阅一些记不清的概念。
这本书,我看的版本是机械工业出版社、范建华等译的。这本书在我看来,翻译得一般,甚至有明显的错误。如果英文熟练,看原版更好:
http://pcvr.nl/tcpip/
下面是我的一些笔记,包括我看书时有疑问的地方,也有对该书的吐槽,有不对的地方请指正:
1.
- Linux—— 静态IP跟动态IP设置
eksliang
linuxIP
一.在终端输入
vi /etc/sysconfig/network-scripts/ifcfg-eth0
静态ip模板如下:
DEVICE="eth0" #网卡名称
BOOTPROTO="static" #静态IP(必须)
HWADDR="00:0C:29:B5:65:CA" #网卡mac地址
IPV6INIT=&q
- Informatica update strategy transformation
18289753290
更新策略组件: 标记你的数据进入target里面做什么操作,一般会和lookup配合使用,有时候用0,1,1代表 forward rejected rows被选中,rejected row是输出在错误文件里,不想看到reject输出,将错误输出到文件,因为有时候数据库原因导致某些column不能update,reject就会output到错误文件里面供查看,在workflow的
- 使用Scrapy时出现虽然队列里有很多Request但是却不下载,造成假死状态
酷的飞上天空
request
现象就是:
程序运行一段时间,可能是几十分钟或者几个小时,然后后台日志里面就不出现下载页面的信息,一直显示上一分钟抓取了0个网页的信息。
刚开始已经猜到是某些下载线程没有正常执行回调方法引起程序一直以为线程还未下载完成,但是水平有限研究源码未果。
经过不停的google终于发现一个有价值的信息,是给twisted提出的一个bugfix
连接地址如下http://twistedmatrix.
- 利用预测分析技术来进行辅助医疗
蓝儿唯美
医疗
2014年,克利夫兰诊所(Cleveland Clinic)想要更有效地控制其手术中心做膝关节置换手术的费用。整个系统每年大约进行2600例此类手术,所以,即使降低很少一部分成本,都可以为诊 所和病人节约大量的资金。为了找到适合的解决方案,供应商将视野投向了预测分析技术和工具,但其分析团队还必须花时间向医生解释基于数据的治疗方案意味着 什么。
克利夫兰诊所负责企业信息管理和分析的医疗
- java 线程(一):基础篇
DavidIsOK
java多线程线程
&nbs
- Tomcat服务器框架之Servlet开发分析
aijuans
servlet
最近使用Tomcat做web服务器,使用Servlet技术做开发时,对Tomcat的框架的简易分析:
疑问: 为什么我们在继承HttpServlet类之后,覆盖doGet(HttpServletRequest req, HttpServetResponse rep)方法后,该方法会自动被Tomcat服务器调用,doGet方法的参数有谁传递过来?怎样传递?
分析之我见: doGet方法的
- 揭秘玖富的粉丝营销之谜 与小米粉丝社区类似
aoyouzi
揭秘玖富的粉丝营销之谜
玖富旗下悟空理财凭借着一个微信公众号上线当天成交量即破百万,第七天成交量单日破了1000万;第23天时,累计成交量超1个亿……至今成立不到10个月,粉丝已经超过500万,月交易额突破10亿,而玖富平台目前的总用户数也已经超过了1800万,位居P2P平台第一位。很多互联网金融创业者慕名前来学习效仿,但是却鲜有成功者,玖富的粉丝营销对外至今仍然是个谜。
近日,一直坚持微信粉丝营销
- Java web的会话跟踪技术
百合不是茶
url会话Cookie会话Seession会话Java Web隐藏域会话
会话跟踪主要是用在用户页面点击不同的页面时,需要用到的技术点
会话:多次请求与响应的过程
1,url地址传递参数,实现页面跟踪技术
格式:传一个参数的
url?名=值
传两个参数的
url?名=值 &名=值
关键代码
- web.xml之Servlet配置
bijian1013
javaweb.xmlServlet配置
定义:
<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.myapp.controller.MyFirstServlet</servlet-class>
<init-param>
<param-name>
- 利用svnsync实现SVN同步备份
sunjing
SVN同步E000022svnsync镜像
1. 在备份SVN服务器上建立版本库
svnadmin create test
2. 创建pre-revprop-change文件
cd test/hooks/
cp pre-revprop-change.tmpl pre-revprop-change
3. 修改pre-revprop-
- 【分布式数据一致性三】MongoDB读写一致性
bit1129
mongodb
本系列文章结合MongoDB,探讨分布式数据库的数据一致性,这个系列文章包括:
数据一致性概述与CAP
最终一致性(Eventually Consistency)
网络分裂(Network Partition)问题
多数据中心(Multi Data Center)
多个写者(Multi Writer)最终一致性
一致性图表(Consistency Chart)
数据
- Anychart图表组件-Flash图转IMG普通图的方法
白糖_
Flash
问题背景:项目使用的是Anychart图表组件,渲染出来的图是Flash的,往往一个页面有时候会有多个flash图,而需求是让我们做一个打印预览和打印功能,让多个Flash图在一个页面上打印出来。
那么我们打印预览的思路是获取页面的body元素,然后在打印预览界面通过$("body").append(html)的形式显示预览效果,结果让人大跌眼镜:Flash是
- Window 80端口被占用 WHY?
bozch
端口占用window
平时在启动一些可能使用80端口软件的时候,会提示80端口已经被其他软件占用,那一般又会有那些软件占用这些端口呢?
下面坐下总结:
1、web服务器是最经常见的占用80端口的,例如:tomcat , apache , IIS , Php等等;
2
- 编程之美-数组的最大值和最小值-分治法(两种形式)
bylijinnan
编程之美
import java.util.Arrays;
public class MinMaxInArray {
/**
* 编程之美 数组的最大值和最小值 分治法
* 两种形式
*/
public static void main(String[] args) {
int[] t={11,23,34,4,6,7,8,1,2,23};
int[]
- Perl正则表达式
chenbowen00
正则表达式perl
首先我们应该知道 Perl 程序中,正则表达式有三种存在形式,他们分别是:
匹配:m/<regexp>;/ (还可以简写为 /<regexp>;/ ,略去 m)
替换:s/<pattern>;/<replacement>;/
转化:tr/<pattern>;/<replacemnt>;
- [宇宙与天文]行星议会是否具有本行星大气层以外的权力呢?
comsci
举个例子: 地球,地球上由200多个国家选举出一个代表地球联合体的议会,那么现在地球联合体遇到一个问题,地球这颗星球上面的矿产资源快要采掘完了....那么地球议会全体投票,一致通过一项带有法律性质的议案,既批准地球上的国家用各种技术手段在地球以外开采矿产资源和其它资源........
&
- Oracle Profile 使用详解
daizj
oracleprofile资源限制
Oracle Profile 使用详解 转
一、目的:
Oracle系统中的profile可以用来对用户所能使用的数据库资源进行限制,使用Create Profile命令创建一个Profile,用它来实现对数据库资源的限制使用,如果把该profile分配给用户,则该用户所能使用的数据库资源都在该profile的限制之内。
二、条件:
创建profile必须要有CREATE PROFIL
- How HipChat Stores And Indexes Billions Of Messages Using ElasticSearch & Redis
dengkane
elasticsearchLucene
This article is from an interview with Zuhaib Siddique, a production engineer at HipChat, makers of group chat and IM for teams.
HipChat started in an unusual space, one you might not
- 循环小示例,菲波拉契序列,循环解一元二次方程以及switch示例程序
dcj3sjt126com
c算法
# include <stdio.h>
int main(void)
{
int n;
int i;
int f1, f2, f3;
f1 = 1;
f2 = 1;
printf("请输入您需要求的想的序列:");
scanf("%d", &n);
for (i=3; i<n; i
- macbook的lamp环境
dcj3sjt126com
lamp
sudo vim /etc/apache2/httpd.conf
/Library/WebServer/Documents
是默认的网站根目录
重启Mac上的Apache服务
这个命令很早以前就查过了,但是每次使用的时候还是要在网上查:
停止服务:sudo /usr/sbin/apachectl stop
开启服务:s
- java ArrayList源码 下
shuizhaosi888
ArrayList源码
版本 jdk-7u71-windows-x64
JavaSE7 ArrayList源码上:http://flyouwith.iteye.com/blog/2166890
/**
* 从这个列表中移除所有c中包含元素
*/
public boolean removeAll(Collection<?> c) {
- Spring Security(08)——intercept-url配置
234390216
Spring Securityintercept-url访问权限访问协议请求方法
intercept-url配置
目录
1.1 指定拦截的url
1.2 指定访问权限
1.3 指定访问协议
1.4 指定请求方法
1.1 &n
- Linux环境下的oracle安装
jayung
oracle
linux系统下的oracle安装
本文档是Linux(redhat6.x、centos6.x、redhat7.x) 64位操作系统安装Oracle 11g(Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production),本文基于各种网络资料精心整理而成,共享给有需要的朋友。如有问题可联系:QQ:52-7
- hotspot虚拟机
leichenlei
javaHotSpotjvm虚拟机文档
JVM参数
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
JVM工具
http://docs.oracle.com/javase/6/docs/technotes/tools/index.html
JVM垃圾回收
http://www.oracle.com
- 读《Node.js项目实践:构建可扩展的Web应用》 ——引编程慢慢变成系统化的“砌砖活”
noaighost
Webnode.js
读《Node.js项目实践:构建可扩展的Web应用》
——引编程慢慢变成系统化的“砌砖活”
眼里的Node.JS
初初接触node是一年前的事,那时候年少不更事。还在纠结什么语言可以编写出牛逼的程序,想必每个码农都会经历这个月经性的问题:微信用什么语言写的?facebook为什么推荐系统这么智能,用什么语言写的?dota2的外挂这么牛逼,用什么语言写的?……用什么语言写这句话,困扰人也是阻碍
- 快速开发Android应用
rensanning
android
Android应用开发过程中,经常会遇到很多常见的类似问题,解决这些问题需要花时间,其实很多问题已经有了成熟的解决方案,比如很多第三方的开源lib,参考
Android Libraries 和
Android UI/UX Libraries。
编码越少,Bug越少,效率自然会高。
但可能由于 根本没听说过、听说过但没用过、特殊原因不能用、自己已经有了解决方案等等原因,这些成熟的解决
- 理解Java中的弱引用
tomcat_oracle
java工作面试
不久之前,我
面试了一些求职Java高级开发工程师的应聘者。我常常会面试他们说,“你能给我介绍一些Java中得弱引用吗?”,如果面试者这样说,“嗯,是不是垃圾回收有关的?”,我就会基本满意了,我并不期待回答是一篇诘究本末的论文描述。 然而事与愿违,我很吃惊的发现,在将近20多个有着平均5年开发经验和高学历背景的应聘者中,居然只有两个人知道弱引用的存在,但是在这两个人之中只有一个人真正了
- 标签输出html标签" target="_blank">关于标签输出html标签
xshdch
jsp
http://back-888888.iteye.com/blog/1181202
关于<c:out value=""/>标签的使用,其中有一个属性是escapeXml默认是true(将html标签当做转移字符,直接显示不在浏览器上面进行解析),当设置escapeXml属性值为false的时候就是不过滤xml,这样就能在浏览器上解析html标签,
&nb