Breadth First Search
BFS家伙还是很有用的,特地从wiki扒了一个动态的图,来帮助感性的理解这个动态搜索的过程。
对于如下一个无权值的有向图,在进行广度优先搜索呢?这里我们的代码实现是,以节点3为入口
对于BFS的理论基础介绍,个人觉得还是看《DSAA》比较好.这里不做介绍,注重分析该搜索算法的实现。
如果对于图这种数据结构不熟悉,这个BFS一般是搞不定的...
下面分别是无向图的邻接表实现和邻接矩阵实现
http://blog.csdn.net/cinmyheart/article/details/41381845
http://blog.csdn.net/cinmyheart/article/details/41370465
---------------------------------------------
如果看过上面的图的实现,看下面的代码应该是非常“熟悉”的。很部分都是在上面的图基础上修改而来的。
首先我们,这里对图进行抽象,然后把关键的实现的API 放到头文件中。
/************************************************************ code file : BFS.h code writer : EOF code date : 2014.11.22 e-mail : [email protected] code description: This file is a header file for out test program. We are using digraph but not undirected graph in BFS. ************************************************************/ #ifndef _BFS_H_ #define _BFS_H_ #include <stdio.h> #include <stdlib.h> #define CONNECTED 1 #define DISCONNECTED 0 #define SUCCESS 0 #define FAILED -1 #define QUEUE_SIZE 10 #define ARRAY_SIZE 20 #define EMPTY_QUEUE -1 #define UNEMPTY_QUEUE 0 /* ** We use these macro as index for struct table */ #define KNOW_OFFSET 0 //vertex that have been found #define DIST_OFFSET 1 //distance of vertex #define PATH_OFFSET 2 //parent vertex of current vertex #define FOUND 1 #define NOT_FOUND 0 /* ** Liitle trick. I use minus one to ** represent positive infinite :) */ #define INFINITE -1 #define ENTRY_POINT 3 struct node { struct node* previous; struct node* next; int data; }; struct vertex { int value; struct vertex* next; struct vertex* end; }; struct graph { int num_vertex; int num_edge; struct vertex adjacent[0]; }; struct table { int height; int width; int msg[0];//we store message of table in this array. }; void unweighted_path(struct table* p_table,struct graph* p_graph); struct graph* init_graph(int vertex,int edge); void release_graph(struct graph* p_graph); int add_edge(struct graph* p_graph,char from_v,char to_v); int print_graph(struct graph* p_graph); /* ** Creat and desctory a table which's size is row*col. */ struct table* init_table(int row,int col); void table_print(struct table* p_table); void release_table(struct table* p_table); /* ** I implement some API to use ADT-Queue */ int queue_destory(struct node* p_queue_tail); int queue_enter(struct node** pp_queue_header, struct node** pp_queue_tail, int number); int queue_init(struct node** pp_queue_header, struct node** pp_queue_tail); int queue_out(struct node** pp_queue_header, struct node** pp_queue_tail); void queue_print(struct node* p_queue_tail); #endif
/************************************************************ code file : add_edge.c code writer : EOF code date : 2014.11.22 e-mail : [email protected] code description: This function will help us to add a new connection between different vertex which is in the graph. *************************************************************/ #include "BFS.h" int add_edge(struct graph* p_graph,char from_v,char to_v) { if(!p_graph || from_v < 0 || to_v < 0) { return FAILED; } struct vertex* p_to_v = (struct vertex*)malloc(sizeof(struct vertex)); if(!p_to_v) { printf("malloc failed in function %s()\n",__FUNCTION__); return FAILED; } if(!(p_graph->adjacent[from_v].end)) { p_graph->adjacent[from_v].next = p_to_v; p_graph->adjacent[from_v].end = p_to_v; p_to_v->next = NULL; p_to_v->value = to_v; } else { p_graph->adjacent[from_v].end->next = p_to_v; p_graph->adjacent[from_v].end = p_to_v;//update the new end node. p_to_v->next = NULL; p_to_v->value = to_v; } return SUCCESS; }
/************************************************************ code file : init_graph.c code writer : EOF code date : 2014.11.22 e-mail : [email protected] code description: This function is used for initializing the graph with inputed parameter @vertex and @edge. ************************************************************/ #include "BFS.h" struct graph* init_graph(int num_vertex,int num_edge) { if(num_vertex <= 0 || num_edge <= 0) { return NULL; } struct graph* p_graph = NULL; p_graph = (struct graph*)malloc(sizeof(struct graph) +\ num_vertex*sizeof(struct vertex)); if(!p_graph) { printf("malloc failed in function %s()\n",__FUNCTION__); return NULL; } p_graph->num_vertex = num_vertex; p_graph->num_edge = num_edge; int temp = 0; //initialize the adjacent relationship for(temp = 0;temp < num_vertex;temp++) { p_graph->adjacent[temp].value = temp; p_graph->adjacent[temp].next = NULL; p_graph->adjacent[temp].end = NULL; } return p_graph; }
/************************************************************ code file : init_table.c code writer : EOF code date : 2014.11.23 e-mail : [email protected] code description: This function will help us to create a table which's size is @row multiply @col. And the size of each unit int this table is sizeof(int). ************************************************************/ #include "BFS.h" struct table* init_table(int row,int col) { if(row <= 0 || col <= 0) { return NULL; } struct table* p_table = (struct table*)malloc(sizeof(struct table) + row*col*sizeof(int)); if(!p_table) { return NULL; } p_table->height = row; p_table->width = col; int num_row = row; int num_col = col; //We must initialize the table ! for(row = 0;row < num_row;row++) { *((int*)(p_table->msg) + row*num_col + KNOW_OFFSET) = NOT_FOUND; if(row != ENTRY_POINT) { *((int*)(p_table->msg) + row*num_col + DIST_OFFSET) = INFINITE; } else { *((int*)(p_table->msg) + row*num_col + DIST_OFFSET) = 0; } *((int*)(p_table->msg) + row*num_col + PATH_OFFSET) = 0; } return p_table; }
/************************************************************ code file : print_graph.c code writer : EOF code date : 2014.11.22 e-mail : [email protected] code description: This function will print out the connection of graph which @p_graph point to. ************************************************************/ #include "BFS.h" int print_graph(struct graph* p_graph) { if(!p_graph) { return FAILED; } int from_v = 0; int to_v = 0; int num_vertex = p_graph->num_vertex; struct vertex* p_vertex = NULL; for(from_v = 0;from_v < num_vertex;from_v++) { p_vertex = &(p_graph->adjacent[from_v]); while(p_vertex) { printf("\t%d",p_vertex->value); p_vertex = p_vertex->next; } printf("\n"); } return SUCCESS; }
/****************************************************************** code writer : EOF code date : 2014.09.13 e-mail : [email protected] Attention: Just a implementation of function queue_init. I would be happy, if my code will help you to know what is queue. we assuem that ... Input data ---> tail | | |queue| | | header ---> Output data If something wrong with my code please touch me by e-mail. *******************************************************************/ #include "BFS.h" int queue_init(struct node** pp_queue_header,struct node** pp_queue_tail) { (*pp_queue_header) = NULL; (*pp_queue_tail) = NULL; return SUCCESS; }
/**************************************************************** code writer : EOF code date: 2014.03.07 e-mail: [email protected] code purpose: Just a implementation of function queue_enter. I would be happy, if my code will help you to know what is queue. ****************************************************************/ #include "BFS.h" int queue_enter(struct node** pp_queue_header , struct node** pp_queue_tail, int number) { struct node* p_new_node = NULL; struct node* p_temp_node = NULL; p_new_node = (struct node*)malloc(sizeof(struct node)); if(p_new_node == NULL) { printf("malloc error!\nqueue enter failed\n"); return FAILED; } if(!(*pp_queue_tail)) { *pp_queue_tail = p_new_node; *pp_queue_header = p_new_node; p_new_node->data = number; //Before 2014.11.22, I forgot to add this line and this is a //little bug, but now everything goes right after I adding this :) p_new_node->previous = NULL; p_new_node->next = NULL; } else { p_temp_node = (*pp_queue_tail); p_new_node->data = number; p_new_node->next = p_temp_node; p_new_node->previous = NULL; p_temp_node->previous = p_new_node; (*pp_queue_tail) = p_new_node; } return SUCCESS; }
/*********************************************************************** code writer : EOF code date : 2014.09.13 e-mail: [email protected] code purpose: Just a implementation of function queue_out. I would be happy, if my code will help you to know what is queue. If something wrong with my code, please touch me by e-mail. ************************************************************************/ #include "BFS.h" int queue_out(struct node** pp_queue_header,struct node** pp_queue_tail) { struct node* p_temp_node = NULL; int ret = 0; if( !(*pp_queue_header)) { /* ** There is no way to check the return value. ** when we use "queue_out()". So, you needn't to do ** that. */ printf("ATTENTION! There is nothing in the queue.\n"); return EMPTY_QUEUE; } p_temp_node = (*pp_queue_header); (*pp_queue_header) = (*pp_queue_header)->previous; if(*pp_queue_header)//If there are not only one element left in the queue { (*pp_queue_header)->next = NULL; } else { *pp_queue_tail = NULL; *pp_queue_header = NULL; } ret = p_temp_node->data; free(p_temp_node); p_temp_node = NULL; return ret; }
/****************************************************************************** code writer : EOF code date : 2014.03.07 e-mail: [email protected] code purpose: Just a implementation of function queue_print. I would be happy, if my code will help you to know what is queue. If something wrong with my code, please touch me by e-mail. ***********************************************************************************/ #include "BFS.h" void queue_print(struct node* p_queue_tail) { struct node* p_temp_node = NULL; p_temp_node = p_queue_tail; printf("queue data at this time:\n"); while(p_temp_node != NULL) { printf("%d ",p_temp_node->data); p_temp_node = p_temp_node->next; } printf("\n"); }
/********************************************************************* code writer : EOF code date : 2014.03.07 e-mail: [email protected] code purpose: Just a implementation of function queue_enter. I would be happy, if my code will help you to know what is queue. *******************************************************************/ #include "BFS.h" int queue_destory(struct node* p_queue_tail) { if(!p_queue_tail) { return SUCCESS; } struct node* p_temp_node = NULL; p_temp_node = p_queue_tail->next; while(p_temp_node != NULL) { p_queue_tail->next = p_temp_node->next; free(p_temp_node); p_temp_node = p_queue_tail->next; } free(p_queue_tail); return SUCCESS; }
/************************************************************ code file : release_graph.c code writer : EOF code date : 2014.11.22 e-mail : [email protected] code description: It's easy and convenient for us to call this API once and free all the graph. *************************************************************/ #include "BFS.h" void release_graph(struct graph* p_graph) { if(!p_graph) { return ; } int temp = 0; int num_vertex = p_graph->num_vertex; struct vertex* p_temp = NULL; for(temp = 0;temp < num_vertex;temp++) { if(p_graph->adjacent[temp].next) { p_temp = (p_graph->adjacent[temp].next->next); while(p_temp) { free(p_graph->adjacent[temp].next); p_graph->adjacent[temp].next = p_temp; p_temp = p_temp->next; } free(p_graph->adjacent[temp].next); } } free(p_graph); }
#include "BFS.h" void release_table(struct table* p_table) { if(!p_table) { return; } free(p_table); }
#include "BFS.h" void table_print(struct table* p_table) { if(!p_table) { return; } int row_num = p_table->height; int col_num = p_table->width; int row = 0; int know = 0; int dist = 0; int path = 0; printf("\tknow\tdist\tpath\n"); for(row = 0;row < row_num;row++) { know = p_table->msg[row*col_num + KNOW_OFFSET]; switch(know) { case FOUND: { printf("\tFound"); break; } case NOT_FOUND: { printf("\tNFond"); break; } default: printf("error value of varible @know\n"); return; } dist = p_table->msg[row*col_num + DIST_OFFSET]; switch(dist) { case INFINITE: { printf("\tINF"); break; } default: printf("\t%d",dist); } path = p_table->msg[row*col_num + PATH_OFFSET]; switch(path) { case 0: { printf("\t0"); break; } default: printf("\tv%d",path); } printf("\n"); } printf("\n\n\n"); }
/************************************************************ code file : unweighted_path.c code writer : EOF code date : 2014.11.23 e-mail : [email protected] code description: This function will do the work of searching. This job is based on a ADT--Queue. You could read "BFS.h" and find that decleration of these functions which is used for Queue. ************************************************************/ #include "BFS.h" void unweighted_path(struct table* p_table,struct graph* p_graph) { if(!p_table || !p_graph) { return; } struct node* p_queue_tail; struct node* p_queue_header; queue_init(&p_queue_header,&p_queue_tail); queue_enter(&p_queue_header, &p_queue_tail, p_graph->adjacent[ENTRY_POINT].value); int vertex_index = 0; struct vertex* p_vertex = NULL; while(!!p_queue_header) { vertex_index = queue_out(&p_queue_header,&p_queue_tail); printf("v%d dequeue\n",vertex_index); *((int*)(p_table->msg)\ + vertex_index*(p_table->width) + KNOW_OFFSET) = FOUND; p_vertex = (struct vertex*)p_graph->adjacent + vertex_index; p_vertex = p_vertex->next; for(;p_vertex;p_vertex = p_vertex->next) { if(*((int*)(p_table->msg) \ + (p_vertex->value)*(p_table->width) + DIST_OFFSET ) == INFINITE) { *((int*)(p_table->msg) \ + (p_vertex->value)*(p_table->width) + DIST_OFFSET ) = \ *((int*)(p_table->msg)\ + (vertex_index)*(p_table->width)\ + DIST_OFFSET) + 1; *((int*)(p_table->msg) \ + (p_vertex->value)*(p_table->width) + PATH_OFFSET ) = vertex_index; queue_enter(&p_queue_header, &p_queue_tail, p_vertex->value); } } table_print(p_table); } queue_destory(p_queue_tail); }
/**************************************************************** code file : test_graph.c code writer : EOF code date : 2014.11.22 e-mail : [email protected] code description: This test program is used for testing BFS. *****************************************************************/ #include "BFS.h" int main() { struct graph* p_graph = NULL; FILE* fp = fopen("./text.txt","r+"); if(!fp) { printf("fopen() failed!\n"); return 0; } int ret = 0; int vertex = 0; int edge = 0; int from_v = 0; int to_v = 0; fscanf(fp,"%d",&vertex); fscanf(fp,"%d",&edge); p_graph = init_graph(vertex,edge); int temp = 0; for(temp;temp < edge;temp++) { /* ** I think it's necessary to check the returned value ** of scanf() family. */ ret = fscanf(fp,"%d %d",&from_v,&to_v); if(ret != 2) { break; } add_edge(p_graph,from_v,to_v); } struct table* p_table = init_table(vertex,3); unweighted_path(p_table,p_graph); print_graph(p_graph); release_table(p_table); release_graph(p_graph); fclose(fp); return 0; }
测试用文本文件text.txt:
测试结果:
图的邻接关系表示及实际图对照
由出队的顺序,各个元素出对后的table的情况
最后,所有的节点都会被检索到(0节点不考虑,这里我们初始数据中没有0节点,这是哑节点~)
我们可以知道,Found 0 0 的是入口节点,即节点3,而Found 1 v3,表示距离初始节点有1个edge距离,而该节点的上一个节点为v3, 同样的,Found 3 v4 表示,距离初始节点有3个edge距离,而该节点的上一个节点为v4.