Leetcode: Longest Valid Parentheses

Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring.

For "(()", the longest valid parentheses substring is "()", which has length = 2.

Another example is ")()())", where the longest valid parentheses substring is "()()", which has length = 4.

O(n^2):

Judge Small: Accepted!
Judge Large:Time Limit Exceeded

int findlength(string s)
    {
		int paired = 0;;
		int len = 0;
		stack<char> stk;
		for(int i=0; i< s.length(); ++i)
		{
			if(s[i]=='(')stk.push(')');
			else if(!stk.empty()){
				stk.pop();
				len+=2;
                if(stk.empty()&&paired<len)
                    paired=len;
			}else{
				len = 0;
			}
		}
        if(stk.empty() && paired == 0)
            paired += len;
		return paired;
	}
	int longestValidParentheses(string s) {
        // Note: The Solution object is instantiated only once.
        int max = 0;
		int tmp = 0;
		for(int i=0; i< s.length();i++)
		{
			tmp = findlength(s.substr(i));
			max = max>tmp?max:tmp;
		}
		return max;
    }

dp:

这道题可以用一维动态规划逆向求解。假设输入括号表达式为String s,维护一个长度为s.length()的一维数组dp[],数组元素初始化为0。 dp[i]表示从s[i]到s[s.length - 1]最长的有效匹配括号子串长度。则存在如下关系:
dp[s.length - 1] = 0;从i - 2 到0逆向求dp[],并记录其最大值。
若s[i] == '(',则在s中从i开始到s.length - 1计算s[i]的值。这个计算分为两步,通过dp[i + 1]进行的(注意dp[i + 1]已经在上一步求解):
在s中寻找从i + 1开始的有效括号匹配子串长度,即dp[i + 1],跳过这段有效的括号子串,查看下一个字符,其下标为j = i + 1 + dp[i + 1]。若j没有越界,并且s[j] == ‘)’,则s[i ... j]为有效括号匹配,dp[i] =dp[i + 1] + 2。
在求得了s[i ... j]的有效匹配长度之后,若j + 1没有越界,则dp[i]的值还要加上从j + 1开始的最长有效匹配,即dp[j + 1]。

O(n)

int longestValidParentheses(string s) {
        // Note: The Solution object is instantiated only once.
    	int slen = s.length();
        if(slen<2)return 0;
		int max = 0;
		int* dp = new int[slen];
		memset(dp,0,sizeof(int)*slen);
		
		for(int i=slen-2; i>=0;i--)
		{
			if(s[i]=='(')
			{
				int j = i+1+dp[i+1];
				if(j<slen && s[j]==')')
				{
					dp[i]=dp[i+1]+2;
					int k = 0;
					if(j+1<slen)k=dp[j+1];
					dp[i] += k;
				}
				max = max>dp[i]?max:dp[i];
			}
		}
		delete[] dp;
		return max;
    }




你可能感兴趣的:(LeetCode,dp,valid,parent,longest)