微信、陌陌 架构方案分析
近两年、手机应用,莫过于微信、陌陌之类最受欢迎;但实现原理,分享文章甚少。
故,提出两种方案,供分享;不对之处,敬请留言学习。
目标
解决大型应用(微信、陌陌级别)中,用户经纬度在不断更新,用户查找频繁的问题。(每分钟1000W级)
=================================================================================================
方案A
本方案前,请先阅读 http://www.wubiao.info/372
由上文,简单可得;
1、仅需每分钟将用户的经纬度,上报到数据库;
2、然后每次用户查找附近好友时,通过 LIKE ‘wm3yr3%’,即可获取
缺点:稍有一定数据量,对数据库的鸭梨可想而知
=================================================================================================
方案B
策略
假象把中国分成,若干个一平方公里的单元格,
1、用户位置的变更,理解为一个单元格移动到另外一个单元格(或者不移动)
2、用户查找附近,理解为查找,自己所在方块的的所有人
数据结构
1、用户基本信息 纬度、经度、GeoHash值(经纬度,仅用于后期距离计算)
2、单元格 集合(用户1,用户2,…)
存储工具
1、redis string(key->value) 结构,存储用户基本信息
2、redis set(集合) 结构,以GeoHash值,前6位作为key(约表示一平方千米),存储单元格的用户群
算法流程
1、更新用户信息,先删除用户原所在集合,再更新当前用户信息,最后更新当前用户所在集合
2、查找附近,直接查找,所在单元格集合所有用户ID
具体实现
<?php /** * LBS核心类 * * @author name <[email protected]> * @site http://www.wubiao.info */ include_once('geohash.class.php'); class lbs { //索引长度 6位 protected $index_len = 6; protected $redis; protected $geohash; public function __construct() { //redis $this->redis = new Redis(); $this->redis->pconnect('127.0.0.1','6379'); //geohash $this->geohash = new Geohash(); } /** * 更新用户信息 * * @param mixed $latitude 纬度 * @param mixed $longitude 经度 */ public function upinfo($user_id,$latitude,$longitude) { //原数据处理 //获取原Geohash $o_hashdata = $this->redis->hGet($user_id,'geo'); if(!empty($o_hashdata)) { //原索引 $o_index_key = substr($o_hashdata, 0, $this->index_len); //删除 $this->redis->sRem($o_index_key,$user_id); } //新数据处理 //纬度 $this->redis->hSet($user_id,'la',$latitude); //经度 $this->redis->hSet($user_id,'lo',$longitude); //Geohash $hashdata = $this->geohash->encode($latitude,$longitude); $this->redis->hSet($user_id,'geo',$hashdata); //索引 $index_key = substr($hashdata, 0, $this->index_len); //存入 $this->redis->sAdd($index_key,$user_id); return true; } /** * 获取附近用户 * * @param mixed $latitude 纬度 * @param mixed $longitude 经度 */ public function serach($latitude,$longitude) { //Geohash $hashdata = $this->geohash->encode($latitude,$longitude); //索引 $index_key = substr($hashdata, 0, $this->index_len); //取得 $user_id_array = $this->redis->sMembers($index_key); return $user_id_array; } } ?>
性能测试
<?php /** * 模拟数据上报 * * @author name <[email protected]> * @site http://www.wubiao.info */ include_once('lbs.class.php'); $b_time = microtime(true); $n = 0; while(1) { //user_id 1~1000000 $user_id = rand(1,1000000); //latitude 30.59773~30.726786 $rand_latitude = rand(30597730,30726786); $latitude = $rand_latitude/1000000; //longitude 103.983192 ~104.16069 $rand_longitude = rand(103983192,104160690); $longitude = $rand_longitude/1000000; $lbs = new lbs(); $lbs->upinfo($user_id,$latitude,$longitude); $n++; mylog($n); $e_time = microtime(true); if(($e_time-$b_time)>=60) { exit; } } function mylog($content) { file_put_contents('upinfo.log',$content."\r\n",FILE_APPEND); } ?>
<?php /** * 模拟查找附近 * * @author name <[email protected]> * @site http://www.wubiao.info */ include_once('lbs.class.php'); $b_time = microtime(true); $n = 0; while(1) { //latitude 30.59773~30.726786 $rand_latitude = rand(30597730,30726786); $latitude = $rand_latitude/1000000; //longitude 103.983192 ~104.16069 $rand_longitude = rand(103983192,104160690); $longitude = $rand_longitude/1000000; $lbs = new lbs(); $re = $lbs->serach($latitude,$longitude); $n++; mylog($n); $e_time = microtime(true); if(($e_time-$b_time)>=60) { exit; } } function mylog($content) { file_put_contents('search.log',$content."\r\n",FILE_APPEND); } ?>
测试环境
虚拟机,内存256M,主频2.93GHz
性能结果
模拟了100W活跃用户行为,不断更新,不断查找附近好友
//60 seconds insert
88544
//60 seconds search
117660
//成都 100W人,数据占用内存
11.97M
总结
从测试结果来看,完全能满足,微信、陌陌之类的性能要求;
尚可改进之处:
1、Geohash,可写成PHP C扩展;或者其他Geohash实现方式
2、Redis,内存消耗较大,可考虑redis集群方案
3、本文仅查出本单元格用户,提高精度,可查出周围八个单元个,求交集
4、求出结果,如需按照由远到近排序;读出Redis经纬度,利用距离公式排序方可。(可参照上一篇文字)
附redis安装方法
=================================================================================================
//redis
wget http://redis.googlecode.com/files/redis-2.4.14.tar.gz make make install //配置 cp redis.conf /etc/ vi /etc/redis.conf #后台 daemonize yes #日志 logfile /dev/null #存储 dir ./ //小内存,内核参数 echo 1 > /proc/sys/vm/overcommit_memory //防火墙 vi /etc/sysconfig/iptables -A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport 6379 -j ACCEPT service iptables restart //启动 redis-server /etc/redis.conf //测试 redis-cli set foo bar OK redis-cli get foo bar
//源码 http://pecl.php.net/package/redis //手册 http://redis.readthedocs.org/en/latest/ //安装 /opt/server/php/bin/phpize ./configure --with-php-config=/opt/server/php/bin/php-config make make install //配置 vi php.ini [redis] extension = redis.so
来源:http://www.wubiao.info/372
随着移动终端的普及,很多应用都基于LBS功能,附近的某某(餐馆、银行、妹纸等等)。
基础数据中,一般保存了目标位置的经纬度;利用用户提供的经纬度,进行对比,从而获得是否在附近。
目标:
查找附近的XXX,由近到远返回结果,且结果中有与目标点的距离。
针对查找附近的XXX,提出两个方案,如下:
一、方案A:
=================================================================================================
抽象为球面两点距离的计算,即已知道球面上两点的经纬度;
点(纬度,经度),A($radLat1,$radLng1)、B($radLat2,$radLng2);
优点:通俗易懂,部署简单便捷
缺点:每次都会查询数据库,性能堪忧
1、推导
通过余弦定理以及弧度计算方法,最终推导出来的算式A为:
$s = acos(cos($radLat1)*cos($radLat2)*cos($radLng1-$radLng2)+sin($radLat1)*sin($radLat2))*$R;
$s = 2*asin(sqrt(pow(sin(($radLat1-$radLat2)/2),2)+cos($radLat1)*cos($radLat2)*pow(sin(($radLng1-$radLng2)/2),2)))*$R;
其中 :
$radLat1、$radLng1,$radLat2,$radLng2 为弧度
$R 为地球半径
2、通过测试两种算法,结果相同且都正确,但通过PHP代码测试,两点间距离,10W次性能对比,自行推导版本计算时长算式B较优,如下:
//算式A
0.56368780136108float(431)
0.57460689544678float(431)
0.59051203727722float(431)
//算式B
0.47404885292053float(431)
0.47808718681335float(431)
0.47946381568909float(431)
3、所以采用数学方法推导出的公式:
<?php //根据经纬度计算距离 其中A($lat1,$lng1)、B($lat2,$lng2) public static function getDistance($lat1,$lng1,$lat2,$lng2) { //地球半径 $R = 6378137; //将角度转为狐度 $radLat1 = deg2rad($lat1); $radLat2 = deg2rad($lat2); $radLng1 = deg2rad($lng1); $radLng2 = deg2rad($lng2); //结果 $s = acos(cos($radLat1)*cos($radLat2)*cos($radLng1-$radLng2)+sin($radLat1)*sin($radLat2))*$R; //精度 $s = round($s* 10000)/10000; return round($s); } ?>
4、在实际应用中,需要从数据库中遍历取出符合条件,以及排序等操作,
将所有数据取出,然后通过PHP循环对比,筛选符合条件结果,显然性能低下;所以我们利用下Mysql存储函数来解决这个问题吧。
4.1、创建Mysql存储函数,并对经纬度字段建立索引
DELIMITER $$ CREATE DEFINER=`root`@`%` FUNCTION `GETDISTANCE`(lat1 DOUBLE, lng1 DOUBLE, lat2 DOUBLE, lng2 DOUBLE) RETURNS double READS SQL DATA DETERMINISTIC BEGIN DECLARE RAD DOUBLE; DECLARE EARTH_RADIUS DOUBLE DEFAULT 6378137; DECLARE radLat1 DOUBLE; DECLARE radLat2 DOUBLE; DECLARE radLng1 DOUBLE; DECLARE radLng2 DOUBLE; DECLARE s DOUBLE; SET RAD = PI() / 180.0; SET radLat1 = lat1 * RAD; SET radLat2 = lat2 * RAD; SET radLng1 = lng1 * RAD; SET radLng2 = lng2 * RAD; SET s = ACOS(COS(radLat1)*COS(radLat2)*COS(radLng1-radLng2)+SIN(radLat1)*SIN(radLat2))*EARTH_RADIUS; SET s = ROUND(s * 10000) / 10000; RETURN s; END$$ DELIMITER ;
4.2、查询SQL
通过SQL,可设置距离以及排序;可搜索出符合条件的信息,以及有一个较好的排序
SELECT *,latitude,longitude,GETDISTANCE(latitude,longitude,30.663262,104.071619) AS distance FROM mb_shop_ext where 1 HAVING distance<1000 ORDER BY distance ASC LIMIT 0,10
二、方案B
=================================================================================================
Geohash算法;geohash是一种地址编码,它能把二维的经纬度编码成一维的字符串。
比如,成都永丰立交的编码是wm3yr31d2524
优点:
1、利用一个字段,即可存储经纬度;搜索时,只需一条索引,效率较高
2、编码的前缀可以表示更大的区域,查找附近的,非常方便。 SQL中,LIKE ‘wm3yr3%’,即可查询附近的所有地点。
3、通过编码精度可模糊坐标、隐私保护等。
缺点: 距离和排序需二次运算(筛选结果中运行,其实挺快)
1、geohash的编码算法
成都永丰立交经纬度(30.63578,104.031601)
1.1、纬度范围(-90, 90)平分成两个区间(-90, 0)、(0, 90), 如果目标纬度位于前一个区间,则编码为0,否则编码为1。
由于30.625265属于(0, 90),所以取编码为1。
然后再将(0, 90)分成 (0, 45), (45, 90)两个区间,而39.92324位于(0, 45),所以编码为0,
然后再将(0, 45)分成 (0, 22.5), (22.5, 45)两个区间,而39.92324位于(22.5, 45),所以编码为1,
依次类推可得永丰立交纬度编码为101010111001001000100101101010。
1.2、经度也用同样的算法,对(-180, 180)依次细分,(-180,0)、(0,180) 得出编码110010011111101001100000000000
1.3、合并经纬度编码,从高到低,先取一位经度,再取一位纬度;得出结果 111001001100011111101011100011000010110000010001010001000100
1.4、用0-9、b-z(去掉a, i, l, o)这32个字母进行base32编码,得到(30.63578,104.031601)的编码为wm3yr31d2524。
11100 10011 00011 11110 10111 00011 00001 01100 00010 00101 00010 00100 => wm3yr31d2524 十进制 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 base32 0 1 2 3 4 5 6 7 8 9 b c d e f g 十进制 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 base32 h j k m n p q r s t u v w x y z
2、策略
1、在纬度和经度入库时,数据库新加一字段geohash,记录此点的geohash值
2、查找附近,利用 在SQL中 LIKE ‘wm3yr3%’;且此结果可缓存;在小区域内,不会因为改变经纬度,而重新数据库查询
3、查找出的有限结果,如需要求距离或者排序,可利用距离公式和二维数据排序;此时也是少量数据,会很快的。
3、PHP基类
geohash.class.php
<?php /** * Encode and decode geohashes * */ class Geohash { private $coding="0123456789bcdefghjkmnpqrstuvwxyz"; private $codingMap=array(); public function Geohash() { for($i=0; $i<32; $i++) { $this->codingMap[substr($this->coding,$i,1)]=str_pad(decbin($i), 5, "0", STR_PAD_LEFT); } } public function decode($hash) { $binary=""; $hl=strlen($hash); for($i=0; $i<$hl; $i++) { $binary.=$this->codingMap[substr($hash,$i,1)]; } $bl=strlen($binary); $blat=""; $blong=""; for ($i=0; $i<$bl; $i++) { if ($i%2) $blat=$blat.substr($binary,$i,1); else $blong=$blong.substr($binary,$i,1); } $lat=$this->binDecode($blat,-90,90); $long=$this->binDecode($blong,-180,180); $latErr=$this->calcError(strlen($blat),-90,90); $longErr=$this->calcError(strlen($blong),-180,180); $latPlaces=max(1, -round(log10($latErr))) - 1; $longPlaces=max(1, -round(log10($longErr))) - 1; $lat=round($lat, $latPlaces); $long=round($long, $longPlaces); return array($lat,$long); } public function encode($lat,$long) { $plat=$this->precision($lat); $latbits=1; $err=45; while($err>$plat) { $latbits++; $err/=2; } $plong=$this->precision($long); $longbits=1; $err=90; while($err>$plong) { $longbits++; $err/=2; } $bits=max($latbits,$longbits); $longbits=$bits; $latbits=$bits; $addlong=1; while (($longbits+$latbits)%5 != 0) { $longbits+=$addlong; $latbits+=!$addlong; $addlong=!$addlong; } $blat=$this->binEncode($lat,-90,90, $latbits); $blong=$this->binEncode($long,-180,180,$longbits); $binary=""; $uselong=1; while (strlen($blat)+strlen($blong)) { if ($uselong) { $binary=$binary.substr($blong,0,1); $blong=substr($blong,1); } else { $binary=$binary.substr($blat,0,1); $blat=substr($blat,1); } $uselong=!$uselong; } $hash=""; for ($i=0; $i<strlen($binary); $i+=5) { $n=bindec(substr($binary,$i,5)); $hash=$hash.$this->coding[$n]; } return $hash; } private function calcError($bits,$min,$max) { $err=($max-$min)/2; while ($bits--) $err/=2; return $err; } private function precision($number) { $precision=0; $pt=strpos($number,'.'); if ($pt!==false) { $precision=-(strlen($number)-$pt-1); } return pow(10,$precision)/2; } private function binEncode($number, $min, $max, $bitcount) { if ($bitcount==0) return ""; $mid=($min+$max)/2; if ($number>$mid) return "1".$this->binEncode($number, $mid, $max,$bitcount-1); else return "0".$this->binEncode($number, $min, $mid,$bitcount-1); } private function binDecode($binary, $min, $max) { $mid=($min+$max)/2; if (strlen($binary)==0) return $mid; $bit=substr($binary,0,1); $binary=substr($binary,1); if ($bit==1) return $this->binDecode($binary, $mid, $max); else return $this->binDecode($binary, $min, $mid); } } ?>
<?php require_once('Mysql.class.php'); require_once('geohash.class.php'); //mysql $conf = array( 'host' => '127.0.0.1', 'port' => 3306, 'user' => 'root', 'password' => '123456', 'database' => 'mocube', 'charset' => 'utf8', 'persistent' => false ); $mysql = new Db_Mysql($conf); $geohash=new Geohash; //经纬度转换成Geohash /* $sql = 'select shop_id,latitude,longitude from mb_shop_ext'; $data = $mysql->queryAll($sql); foreach($data as $val) { $geohash_val = $geohash->encode($val['latitude'],$val['longitude']); $sql = 'update mb_shop_ext set geohash= "'.$geohash_val.'" where shop_id = '.$val['shop_id']; echo $sql; $re = $mysql->query($sql); var_dump($re); } */ //获取附近的信息 $n_latitude = $_GET['la']; $n_longitude = $_GET['lo']; //开始 $b_time = microtime(true); //方案A,直接利用数据库存储函数,遍历排序 /* $sql = 'SELECT *,latitude,longitude,GETDISTANCE(latitude,longitude,'.$n_latitude.','.$n_longitude.') AS distance FROM mb_shop_ext where 1 HAVING distance<1000 ORDER BY distance ASC'; $data = $mysql->queryAll($sql); //结束 $e_time = microtime(true); echo $e_time - $b_time; var_dump($data); exit; */ //方案B geohash求出附近,然后排序 //当前 geohash值 $n_geohash = $geohash->encode($n_latitude,$n_longitude); //附近 $n = $_GET['n']; $like_geohash = substr($n_geohash, 0, $n); $sql = 'select * from mb_shop_ext where geohash like "'.$like_geohash.'%"'; echo $sql; $data = $mysql->queryAll($sql); //算出实际距离 foreach($data as $key=>$val) { $distance = getDistance($n_latitude,$n_longitude,$val['latitude'],$val['longitude']); $data[$key]['distance'] = $distance; //排序列 $sortdistance[$key] = $distance; } //距离排序 array_multisort($sortdistance,SORT_ASC,$data); //结束 $e_time = microtime(true); echo $e_time - $b_time; var_dump($data); //根据经纬度计算距离 其中A($lat1,$lng1)、B($lat2,$lng2) function getDistance($lat1,$lng1,$lat2,$lng2) { //地球半径 $R = 6378137; //将角度转为狐度 $radLat1 = deg2rad($lat1); $radLat2 = deg2rad($lat2); $radLng1 = deg2rad($lng1); $radLng2 = deg2rad($lng2); //结果 $s = acos(cos($radLat1)*cos($radLat2)*cos($radLng1-$radLng2)+sin($radLat1)*sin($radLat2))*$R; //精度 $s = round($s* 10000)/10000; return round($s); }
四、总结
方案B的亮点在于:
1、搜索结果可缓存,重复使用,不会因为用户有小范围的移动,直接穿透数据库查询。
2、先缩小结果范围,再运算、排序,可提升性能。
254条记录,性能对比,
在实际应用场景中,方案B数据库搜索可内存缓存;且如数据量更大,方案B结果会更优。
方案A:
0.016560077667236
0.032402992248535
0.040318012237549
方案B
0.0079810619354248
0.0079669952392578
0.0064868927001953
五、其他
两种方案,根据应用场景以及负载情况合理选择,当然推荐方案B;
不管哪种方案,都记得,给列加上索引,利于数据库检索。