1、选择合适的算法和数据结构选择一种合适的数据结构很重要,如果在一堆随机存放的数中使用了大量的插入和删除指令,那使用链表要快得多。数组与指针语句具有十分密切的关系,一般来说,指针比较灵活简洁,而数组则比较直观,容易理解。对于大部分的编译器,使用指针比使用数组生成的代码更短,执行效率更高。在许多种情况下,可以用指针运算代替数组索引,这样做常常能产生又快又短的代码。与数组索引相比,指针一般能使代码速度更快,占用空间更少。使用多维数组时差异更明显。下面的代码作用是相同的,但是效率不一样数组索引,指针运算
For(;;){ p=arrayA=array[t++]; for(;;){ a=*(p++); } }
指针方法的优点是,array的地址每次装入地址p后,在每次循环中只需对p增量操作。在数组索引方法中,每次循环中都必须根据t值求数组下标的复杂运算。2、使用尽量小的数据类型能够使用字符型(char)定义的变量,就不要使用整型(int)变量来定义;能够使用整型变量定义的变量就不要用长整型(long int),能不使用浮点型(float)变量就不要使用浮点型变量。当然,在定义变量后不要超过变量的作用范围,如果超过变量的范围赋值,C编译器并不报错,但程序运行结果却错了,而且这样的错误很难发现。在ICCAVR中,可以在Options中设定使用printf参数,尽量使用基本型参数(%c、%d、%x、%X、%u和%s格式说明符),少用长整型参数(%ld、%lu、%lx和%lX格式说明符),至于浮点型的参数(%f)则尽量不要使用,其它C编译器也一样。在其它条件不变的情况下,使用%f参数,会使生成的代码的数量增加很多,执行速度降低。3、减少运算的强度(1)、查表(游戏程序员必修课)一个聪明的游戏大虾,基本上不会在自己的主循环里搞什么运算工作,绝对是先计算好了,再到循环里查表。看下面的例子:
旧代码:
long factorial(int i) { if (i == 0)return 1; else return i * factorial(i - 1); }
新代码:
static long factorial_table[] ={1, 1, 2, 6, 24, 120, 720 /* etc */ }; long factorial(int i) { return factorial_table; }
如果表很大,不好写,就写一个init函数,在循环外临时生成表格。
(2)、求余运算a=a%8;可以改为:a=a&7;说明:位操作只需一个指令周期即可完成,而大部分的C编译器的“%”运算均是调用子程序来完成,代码长、执行速度慢。通常,只要求是求2n方的余数,均可使用位操作的方法来代替。
(3)、平方运算a=pow(a, 2.0);可以改为:a=a*a;说明:在有内置硬件乘法器的单片机中(如51系列),乘法运算比求平方运算快得多,因为浮点数的求平方是通过调用子程序来实现的,在自带硬件乘法器的AVR单片机中,如ATMega163中,乘法运算只需2个时钟周期就可以完成。既使是在没有内置硬件乘法器的AVR单片机中,乘法运算的子程序比平方运算的子程序代码短,执行速度快。如果是求3次方,如:a=pow(a,3。0);更改为:a=a*a*a;则效率的改善更明显。
(4)、用移位实现乘除法运算a=a*4;b=b/4;可以改为:a=a<<2;b=b>>2;通常如果需要乘以或除以2n,都可以用移位的方法代替。在ICCAVR中,如果乘以2n,都可以生成左移的代码,而乘以其它的整数或除以任何数,均调用乘除法子程序。用移位的方法得到代码比调用乘除法子程序生成的代码效率高。实际上,只要是乘以或除以一个整数,均可以用移位的方法得到结果,如:a=a*9可以改为:a=(a<<3)+a采用运算量更小的表达式替换原来的表达式,下面是一个经典例子:
旧代码:
static long factorial_table[] ={1, 1, 2, 6, 24, 120, 720 /* etc */ }; long factorial(int i) { return factorial_table; }
新代码:
x = w & 7; /* 位操作比求余运算快*/ y = x * x; /* 乘法比平方运算快*/ z = (y << 5) + y; /* 位移乘法比乘法快 */ for (i = h = 0; i < MAX; i++) { h += 14; /* 加法比乘法快 */ printf("%d",h); }
(5)、避免不必要的整数除法整数除法是整数运算中最慢的,所以应该尽可能避免。一种可能减少整数除法的地方是连除,这里除法可以由乘法代替。这个替换的副作用是有可能在算乘积时会溢出,所以只能在一定范围的除法中使用。
不好的代码:
int i, j, k, m; m = i / j / k;
推荐的代码:
int i, j, k, m; m = i / (j * k);
(6)、使用增量和减量操作符在使用到加一和减一操作时尽量使用增量和减量操作符,因为增量符语句比赋值语句更快,原因在于对大多数CPU来说,对内存字的增、减量操作不必明显地使用取内存和写内存的指令,比如下面这条语句:x=x+1;模仿大多数微机汇编语言为例,产生的代码类似于:move A,x ;把x从内存取出存入累加器Aadd A,1 ;累加器A加1store x ;把新值存回x如果使用增量操作符,生成的代码如下:incr x ;x加1显然,不用取指令和存指令,增、减量操作执行的速度加快,同时长度也缩短了。
(7)、使用复合赋值表达式复合赋值表达式(如a-=1及a+=1等)都能够生成高质量的程序代码。
(8)、提取公共的子表达式
在某些情况下,C++编译器不能从浮点表达式中提出公共的子表达式,因为这意味着相当于对表达式重新排序。需要特别指出的是,编译器在提取公共子表达式前不能按照代数的等价关系重新安排表达式。这时,程序员要手动地提出公共的子表达式(在VC.NET里有一项“全局优化”选项可以完成此工作,但效果就不得而知了)。
不好的代码:
float a, b, c, d, e, f; e = b * c / d; f = b / d * a;
float a, b, c, d, e, f; const float t(b / d); e = c * t; f = a * t;
//不好的代码: float a, b, c, e, f; e = a / c; f = b / c; //推荐的代码: float a, b, c, e, f; const float t(1.0f / c); e = a * t; f = b * t;
struct { char a[5]; long k; double x; } baz;
struct { double x; long k; char a[5]; char pad[7]; } baz;
short ga, gu, gi; long foo, bar; double x, y, z[3]; char a, b; float baz;
double z[3]; double x, y; long foo, bar; float baz; short ga, gu, gi;
double z[3]; double x, y; long foo, bar; float baz; short ga, gu, gi;
void isqrt(unsigned long a, unsigned long* q, unsigned long* r) { unsigned long qq, rr; qq = a; if (a > 0) { while (qq > (rr = a / qq)) { qq = (qq + rr) >> 1; } } rr = a - qq * qq; *q = qq; *r = rr; }
for (i = 0; i < 4; i ++) { r[i] = 0; for (j = 0; j < 4; j ++) { r[i] += M[j][i]*V[j]; } }
r[0] = M[0][0]*V[0] + M[1][0]*V[1] + M[2][0]*V[2] + M[3][0]*V[3]; r[1] = M[0][1]*V[0] + M[1][1]*V[1] + M[2][1]*V[2] + M[3][1]*V[3]; r[2] = M[0][2]*V[0] + M[1][2]*V[1] + M[2][2]*V[2] + M[3][2]*V[3]; r[3] = M[0][3]*V[0] + M[1][3]*V[1] + M[2][3]*V[2] + M[3][3]*v[3];
void delay (void) { unsigned int i; for (i=0;i<1000;i++) ; }
void delay (void) { unsigned int i; for (i=1000;i>0;i--) ; }
unsigned int i; i=0; while (i<1000) { i++; //用户程序 }
unsigned int i; i=1000; do { i--; //用户程序 } while (i>0);
for (i = 0; i < 100; i++) { do_stuff(i); }
for (i = 0; i < 100; ) { do_stuff(i); i++; do_stuff(i); i++; do_stuff(i); i++; do_stuff(i); i++; do_stuff(i); i++; do_stuff(i); i++; do_stuff(i); i++; do_stuff(i); i++; do_stuff(i); i++; do_stuff(i); i++; }
(6)、循环嵌套
把相关循环放到一个循环里,也会加快速度。
旧代码:
for (i = 0; i < MAX; i++) /* initialize 2d array to 0's */ for (j = 0; j < MAX; j++) a[i][j] = 0.0; for (i = 0; i < MAX; i++) /* put 1's along the diagonal */ a[i][i] = 1.0;
for (i = 0; i < MAX; i++) /* initialize 2d array to 0's */ { for (j = 0; j < MAX; j++) a[i][j] = 0.0; a[i][i] = 1.0; /* put 1's along the diagonal */ }
int days_in_month, short_months, normal_months, long_months; switch (days_in_month) { case 28: case 29: short_months ++; break; case 30: normal_months ++; break; case 31: long_months ++; break; default: cout << "month has fewer than 28 or more than 31 days" << endl; break; }
int days_in_month, short_months, normal_months, long_months; switch (days_in_month) { case 31: long_months ++; break; case 30: normal_months ++; break; case 28: case 29: short_months ++; break; default: cout << "month has fewer than 28 or more than 31 days" << endl; break; }
当switch语句中的case标号很多时,为了减少比较的次数,明智的做法是把大switch语句转为嵌套switch语句。把发生频率高的case 标号放在一个switch语句中,并且是嵌套switch语句的最外层,发生相对频率相对低的case标号放在另一个switch语句中。比如,下面的程序段把相对发生频率低的情况放在缺省的case标号内。
pMsg=ReceiveMessage(); switch (pMsg->type) { case FREQUENT_MSG1: handleFrequentMsg(); break; case FREQUENT_MSG2: handleFrequentMsg2(); break; case FREQUENT_MSGn: handleFrequentMsgn(); break; default: //嵌套部分用来处理不经常发生的消息 switch (pMsg->type) { case INFREQUENT_MSG1: handleInfrequentMsg1(); break; case INFREQUENT_MSG2: handleInfrequentMsg2(); break; case INFREQUENT_MSGm: handleInfrequentMsgm(); break; } }
enum MsgType{Msg1, Msg2, Msg3} switch (ReceiveMessage() { case Msg1; 。。。。。。 case Msg2; 。。。。。 case Msg3; 。。。。。 }
/*准备工作*/ int handleMsg1(void); int handleMsg2(void); int handleMsg3(void); /*创建一个函数指针数组*/ int (*MsgFunction [])()={handleMsg1, handleMsg2, handleMsg3}; /*用下面这行更有效的代码来替换switch语句*/ status=MsgFunction[ReceiveMessage()]();
for (i = 1; i <= MAX; i++) { 。。。 } //新代码: i = MAX+1; while (--i) { 。。。 }
char a[MAX+5]; for (i = 1; i <= MAX; i++) { *(a+i+4)=0; } 新代码: i = MAX+1; while (--i) { *(a+i+4)=0; }
for( i 。。。 ) { if( CONSTANT0 ) { DoWork0( i ); // 假设这里不改变CONSTANT0的值 } else { DoWork1( i ); // 假设这里不改变CONSTANT0的值 } }
if( CONSTANT0 ) { for( i 。。。 ) { DoWork0( i ); } } else { for( i 。。。 ) { DoWork1( i ); } }
//不好的代码: double a[100], sum; int i; sum = 0.0f; for (i=0; i<100; i++) sum += a[i]; //推荐的代码: double a[100], sum1, sum2, sum3, sum4, sum; int i; sum1 = sum2 = sum3 = sum4 = 0.0; for (i = 0; i < 100; i += 4) { sum1 += a[i]; sum2 += a[i+1]; sum3 += a[i+2]; sum4 += a[i+3]; } sum = (sum4+sum3)+(sum1+sum2);
//不好的代码: float x[VECLEN], y[VECLEN], z[VECLEN]; 。。。。。。 for (unsigned int k = 1; k < VECLEN; k ++) { x[k] = x[k-1] + y[k]; } for (k = 1; k <VECLEN; k++) { x[k] = z[k] * (y[k] - x[k-1]); } //推荐的代码: float x[VECLEN], y[VECLEN], z[VECLEN]; 。。。。。。 float t(x[0]); for (unsigned int k = 1; k < VECLEN; k ++) { t = t + y[k]; x[k] = t; } t = x[0]; for (k = 1; k <; VECLEN; k ++) { t = z[k] * (y[k] - t); x[k] = t; }
//旧代码: total = a->b->c[4]->aardvark + a->b->c[4]->baboon + a->b->c[4]->cheetah + a->b->c[4]->dog; //新代码: struct animals * temp = a->b->c[4]; total = temp->aardvark + temp->baboon + temp->cheetah + temp->dog;
8、函数优化
(1)Inline函数
在C++中,关键字Inline可以被加入到任何函数的声明中。这个关键字请求编译器用函数内部的代码替换所有对于指出的函数的调用。这样做在两个方面快于函数调用:第一,省去了调用指令需要的执行时间;第二,省去了传递变元和传递过程需要的时间。但是使用这种方法在优化程序速度的同时,程序长度变大了,因此需要更多的ROM。使用这种优化在Inline函数频繁调用并且只包含几行代码的时候是最有效的。
(2)不定义不使用的返回值
函数定义并不知道函数返回值是否被使用,假如返回值从来不会被用到,应该使用void来明确声明函数不返回任何值。
(3)减少函数调用参数
使用全局变量比函数传递参数更加有效率。这样做去除了函数调用参数入栈和函数完成后参数出栈所需要的时间。然而决定使用全局变量会影响程序的模块化和重入,故要慎重使用。
(4)所有函数都应该有原型定义
一般来说,所有函数都应该有原型定义。原型定义可以传达给编译器更多的可能用于优化的信息。
(5)尽可能使用常量(const)
尽可能使用常量(const)。C++ 标准规定,如果一个const声明的对象的地址不被获取,允许编译器不对它分配储存空间。这样可以使代码更有效率,而且可以生成更好的代码。
(6)把本地函数声明为静态的(static)
如果一个函数只在实现它的文件中被使用,把它声明为静态的(static)以强制使用内部连接。否则,默认的情况下会把函数定义为外部连接。这样可能会影响某些编译器的优化——比如,自动内联。
9、采用递归
与LISP之类的语言不同,C语言一开始就病态地喜欢用重复代码循环,许多C程序员都是除非算法要求,坚决不用递归。事实上,C编译器们对优化递归调用一点都不反感,相反,它们还很喜欢干这件事。只有在递归函数需要传递大量参数,可能造成瓶颈的时候,才应该使用循环代码,其他时候,还是用递归好些。
10、变量
(1)register变量
在声明局部变量的时候可以使用register关键字。这就使得编译器把变量放入一个多用途的寄存器中,而不是在堆栈中,合理使用这种方法可以提高执行速度。函数调用越是频繁,越是可能提高代码的速度。
在最内层循环避免使用全局变量和静态变量,除非你能确定它在循环周期中不会动态变化,大多数编译器优化变量都只有一个办法,就是将他们置成寄存器变量,而对于动态变量,它们干脆放弃对整个表达式的优化。尽量避免把一个变量地址传递给另一个函数,虽然这个还很常用。C语言的编译器们总是先假定每一个函数的变量都是内部变量,这是由它的机制决定的,在这种情况下,它们的优化完成得最好。但是,一旦一个变量有可能被别的函数改变,这帮兄弟就再也不敢把变量放到寄存器里了,严重影响速度。看例子:
a = b();
c(&d);
因为d的地址被c函数使用,有可能被改变,编译器不敢把它长时间的放在寄存器里,一旦运行到c(&d),编译器就把它放回内存,如果在循环里,会造成N次频繁的在内存和寄存器之间读写d的动作,众所周知,CPU在系统总线上的读写速度慢得很。比如你的赛杨300,CPU主频300,总线速度最多66M,为了一个总线读,CPU可能要等4-5个周期,得。。得。。得。。想起来都打颤。
(2)、同时声明多个变量优于单独声明变量
(3)、短变量名优于长变量名,应尽量使变量名短一点
(4)、在循环开始前声明变量
11、使用嵌套的if结构
在if结构中如果要判断的并列条件较多,最好将它们拆分成多个if结构,然后嵌套在一起,这样可以避免无谓的判断。