[POJ3897] Maze Stretching (二分)(A*)

Description

Usually the path in a maze is calculated as the sum of steps taken from the starting point until the ending point, assuming that the distance of one step is exactly 1. Lets assume that we could “stretch” (shorten or extend) the maze in vertical dimension (north-south). By stretching, we are just changing the passed distance between two cells. (it becomes X instead of one). We have a two dimensional maze which has '#' for walls, 'S' in the starting cell and 'E' at the ending cell. 
Due to outside conditions, we need to make the shortest path to be exactly L in size. We are not allowed to change the maze configuration, nor to make any changes in the horizontal dimension. We are only allowed to stretch the vertical dimension, and that can be done by any percentage. 
Find the percentage of the stretch P, for which the shortest path of the maze will be exactly L.

Input

First line of the input contains the number of test cases. For each test case, firstly two numbers L and N are given, where L is the required length of the shortest path and N is the number of lines that are given describing the maze. The following N lines describes the maze such as that each line describes a row of the maze. (Each row length is the horizontal dimension of the maze).

Output

For each test case output the percentage of the stretch in the following format: 
Case #K: P% 
- P should have leading zero if the number is between 0 and 1. 
- P should be rounded up on 3 decimals, and always formatted on 3 decimals (with trailing zeros if needed).

Sample Input

2
2.5 4
#####
#S  #
#  E#
#####
21 13
############
#S##     #E#
# ##  #  # #
#   # #  # #
### # #  # #
#   # #  # #
#  ## #  # #
##  # #  # #
### # #  # #
##  # #  # #
#  ## #    #
#     #    #
############

Sample Output

Case #1: 50.000%
Case #2: 21.053%


题意:给一个迷宫,从S走到E,你可以将纵横(vertical)的路径拉伸(stretch),但是水平方向(horizontal)的路径长度保持为1个单位。 通过拉伸使S点到E点的最短距离为给定的L,求拉伸的比率(题目保证在0%~1000%之间)。

其实根据题目保证拉伸比率的范围就猜得到是二分。显然单调性是满足的,拉长距离后最短距离显然不会变短。然后通过最短路来判定,数据极其小,最短路用BFS就可以搞了,但是放在A*的作业里我还是用A*算了。。自己乱搞了了个估值函数:到终点的曼哈顿距离。。这个其实比实际值差很远,,但是满足小于等于实际值的基本特征,就能保证正确性,而且即使写丑了最坏比BFS多一个优先队列的log级别。

另外,读入数据不是很好搞。我赌他数据不会太坑。。也就是四周都有'#'号。。所以我先通过第一行的#个数判断M,每一行第一个字符#用cin,然后M-1个字符就用getchar了。。


#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
#define DB double
const DB EPS = 1e-4, INF = 1e5;
int T, N, M;
int xs, ys, xe, ye;
DB L;
char a[105][105];
const int d[4][2] = {{0,1},{0,-1},{1,0},{-1,0}};

struct ss {
	int x, y;
	DB pre, aft;
	ss () {}
	ss (int a,int b,DB c,DB d) {x=a; y=b; pre=c; aft=d;} //我一开始十分沙茶地写成了c=pre。。调了半小时才发现。。
	bool operator < (const ss&a) const {
		return pre+aft > a.pre+a.aft;
	}
};
#define Abs(a) ((a)>0?(a):-(a))
#define inmap(a,b) (a>0&&b>0&&a<=N&&b<=N)
DB mht(int x, int y, DB rate) { //后半部分估值函数。曼哈顿距离
	return rate/100.0*Abs(xe-x) + Abs(ye-y);
}
DB f[105][105]; //保存估值函数值
DB Astar(DB stre)
{
	priority_queue<ss> Q;
	Q.push(ss(xs, ys, 0, mht(xs,ys,stre)));
	for (int i = 1; i<=N; ++i)
		for (int j = 1; j<=M; ++j)
			f[i][j] = INF;
	DB dis, g;
	ss t;
	int i, tx, ty;
	while (!Q.empty()) {
		t = Q.top(); Q.pop();
		if (t.pre+t.aft > f[t.x][t.y])
			continue;
		for (i = 0; i<4; ++i) {
			tx = t.x + d[i][0];
			ty = t.y + d[i][1];
			if (!inmap(tx,ty) || a[tx][ty]=='#') continue;
			if (i<2) dis = t.pre + 1;
			else dis = t.pre + stre / 100.0;
			if (tx == xe && ty == ye)
				return dis;
			g = mht(tx,ty,stre);
			if (dis+g < f[tx][ty]) {
				f[tx][ty] = dis+g; //dis是从起点到这里的距离,g是估计的到终点的距离下界。合成估值函数
				Q.push(ss(tx, ty, dis, g));
			}
		}
	}
	return -1;
}

DB work()
{
	DB l = 0, r = 1000, mid = (l+r)/2.0, res;
	while (l+EPS < r) {
		res = Astar(mid);
		if (res > L) r = mid;
		else l = mid;
		mid = (l+r) / 2.0;
	}
	return mid;
}

int main()
{
	int i, j;
	scanf("%d", &T);
	for (int ks = 1; ks<=T; ++ks) {
		scanf("%lf%d%s", &L, &N, a[1]+1);
		M = strlen(a[1]+1);
		for (i = 2; i<=N; ++i) {
			cin >> a[i][1];
			for (j = 2; j<=M; ++j)
				a[i][j] = getchar();
			for (j = 1; j<=M; ++j) {
				if (a[i][j] == 'S') xs = i, ys = j;
				if (a[i][j] == 'E') xe = i, ye = j;
			}
		}
		DB ans = work();
		printf("Case #%d: %.3lf%%\n", ks, ans);
	}
	return 0;
}



你可能感兴趣的:(poj,OI)