今天又升级了最新版内核2.6.38.5,编了一下,我之前写的几个模块都可以用,看来这一块没有太大差异。顺便把内核升级写了一个相关的文档。大家如果没升级过内核的可以参考一下:http://blog.csdn.net/z2007b/archive/2011/05/09/6407458.aspx 。好了。上节我们用最直观的方式知道了kobject_create_and_add("wwhs_drvmode",NULL)这个函数做了些什么事。那kset呢?经过我们在最前面两小节的分析可以知道kset_register其实就比kobject多了一个函数kobject_uevent。先给出kset_register的定义吧:
int kset_register(struct kset *k)
{
int err;
if (!k)
return -EINVAL;
kset_init(k);
err = kobject_add_internal(&k->kobj);
if (err)
return err;
kobject_uevent(&k->kobj, KOBJ_ADD);
return 0;
}
记起来了吧。这个讲还是为时过早,反正大家只要知道这个东西是用来通知用户空间的就行了。
接下来我们来个大家感兴趣一点的:bus_register。下面这个是经过我改装过的小例子。总共三个文件:
1.wwhs_public.h
#include <linux/module.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/stat.h>
#include <linux/slab.h>
#include <linux/kobject.h>
#define wwhs_dbg(dbgbuf) printk(KERN_ERR"wwhs:%s/n",dbgbuf);
2.wwhs_bus.c
#include "../wwhs_public.h"
static int wwhs_bus_match(struct device *dev, struct device_driver *drv)
{
return 1;
}
struct bus_type wwhs_bus_type = {
.name = "wwhs_bus",
.match = wwhs_bus_match,
};
static int __init wwhs_bus_init()
{
wwhs_dbg("bus register");
return bus_register(&wwhs_bus_type);
}
static void __exit wwhs_bus_exit()
{
wwhs_dbg("bus unregister");
bus_unregister(&wwhs_bus_type);
}
module_init(wwhs_bus_init);
module_exit(wwhs_bus_exit);
MODULE_AUTHOR("wwhs");
MODULE_DESCRIPTION("wwhs_bus test");
MODULE_LICENSE("GPL");
3.Makefile
obj-m+=wwhs_bus.o
KERNELDIR=/opt/kernel/linux-2.6.38/linux-2.6.38.5
PWD:=$(shell pwd)
all:
make -C $(KERNELDIR) M=$(PWD) modules
clean:
rm -rf *.o* *.ko* *.mod.c *.cmd *.symvers .tmp_versions .*.cmd
编译并安装模块,我们发现在/sys/bus下面多了一个目录:wwhs_bus。进去看看:
Ls
devices drivers drivers_autoprobe drivers_probe uevent
多了五个东西。
下面我们来结合源码对bug_register进行详细的分析。
int bus_register(struct bus_type *bus)
{
int retval;
struct subsys_private *priv;
priv = kzalloc(sizeof(struct subsys_private), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->bus = bus;
bus->p = priv;
BLOCKING_INIT_NOTIFIER_HEAD(&priv->bus_notifier);
retval = kobject_set_name(&priv->subsys.kobj, "%s", bus->name);
if (retval)
goto out;
priv->subsys.kobj.kset = bus_kset;
priv->subsys.kobj.ktype = &bus_ktype;
priv->drivers_autoprobe = 1;
retval = kset_register(&priv->subsys);
if (retval)
goto out;
retval = bus_create_file(bus, &bus_attr_uevent);
if (retval)
goto bus_uevent_fail;
priv->devices_kset = kset_create_and_add("devices", NULL,
&priv->subsys.kobj);
if (!priv->devices_kset) {
retval = -ENOMEM;
goto bus_devices_fail;
}
priv->drivers_kset = kset_create_and_add("drivers", NULL,
&priv->subsys.kobj);
if (!priv->drivers_kset) {
retval = -ENOMEM;
goto bus_drivers_fail;
}
klist_init(&priv->klist_devices, klist_devices_get, klist_devices_put);
klist_init(&priv->klist_drivers, NULL, NULL);
retval = add_probe_files(bus);
if (retval)
goto bus_probe_files_fail;
retval = bus_add_attrs(bus);
if (retval)
goto bus_attrs_fail;
pr_debug("bus: '%s': registered/n", bus->name);
return 0;
bus_attrs_fail:
remove_probe_files(bus);
bus_probe_files_fail:
kset_unregister(bus->p->drivers_kset);
bus_drivers_fail:
kset_unregister(bus->p->devices_kset);
bus_devices_fail:
bus_remove_file(bus, &bus_attr_uevent);
bus_uevent_fail:
kset_unregister(&bus->p->subsys);
out:
kfree(bus->p);
bus->p = NULL;
return retval;
}
在函数中首先们感兴趣的是:
priv->subsys.kobj.kset = bus_kset;
priv->subsys.kobj.ktype = &bus_ktype;
priv->drivers_autoprobe = 1;
我们通过对代码进行查找发现bus_kset其定义中下:
static struct kset *bus_kset;
很明显会有别的地方对它已经进行初始化了。我们在bus.c文件中发现有这样的一个函数:
int __init buses_init(void)
{
bus_kset = kset_create_and_add("bus", &bus_uevent_ops, NULL);
if (!bus_kset)
return -ENOMEM;
return 0;
}
而bus_uevent_ops的定义如下:
static const struct kset_uevent_ops bus_uevent_ops = {
.filter = bus_uevent_filter,
};
其中函数bus_uevent_filter,定义如下:
static int bus_uevent_filter(struct kset *kset, struct kobject *kobj)
{
struct kobj_type *ktype = get_ktype(kobj);
if (ktype == &bus_ktype)
return 1;
return 0;
}
OK,下一个, bus_ktype:
static struct kobj_type bus_ktype = {
.sysfs_ops = &bus_sysfs_ops,
};
static const struct sysfs_ops bus_sysfs_ops = {
.show = bus_attr_show,
.store = bus_attr_store,
};
static ssize_t bus_attr_show(struct kobject *kobj, struct attribute *attr,
char *buf)
{
struct bus_attribute *bus_attr = to_bus_attr(attr);
struct subsys_private *subsys_priv = to_subsys_private(kobj);
ssize_t ret = 0;
if (bus_attr->show)
ret = bus_attr->show(subsys_priv->bus, buf);
return ret;
}
static ssize_t bus_attr_store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
struct bus_attribute *bus_attr = to_bus_attr(attr);
struct subsys_private *subsys_priv = to_subsys_private(kobj);
ssize_t ret = 0;
if (bus_attr->store)
ret = bus_attr->store(subsys_priv->bus, buf, count);
return ret;
}
接下来是:
kset_register(&priv->subsys);
又见到老朋友了,这个老朋友将会帮我们在/sys/bus下创建一个名为wwhs_bus的目录。
接下来是bus_create_file(bus, &bus_attr_uevent);
bus_attr_uevent 是什么呢?用sourceinsight看是黑的,直接点击的话是跳转不了的,另外有很多高手推荐的vim、emacs,或者再装上高级的插件cscope、ctags也肯定是直接找不到的。
除非你自已根据linux内核的语法规则自已再写个插件还差不多,但前提条件是你要先手工找到熟悉规则才能写得出来,否则,你永远也别想直接找到。
不过没事,哥已经帮你找到了,在这:
static BUS_ATTR(uevent, S_IWUSR, NULL, bus_uevent_store);
再看gh BUS_ATTR这个宏:
#define BUS_ATTR(_name, _mode, _show, _store) /
struct bus_attribute bus_attr_##_name = __ATTR(_name, _mode, _show, _store)
明白了吧。
static ssize_t bus_uevent_store(struct bus_type *bus,
const char *buf, size_t count)
{
enum kobject_action action;
if (kobject_action_type(buf, count, &action) == 0)
kobject_uevent(&bus->p->subsys.kobj, action);
return count;
}
很明显我们上面分析的这一堆代码会在/sys/bus/wwhs_bus目录之下创建一个叫uevent的文件。并且我们如果往这个文件中写入字符的时候会触发bus_uevent_store函数的执行。这个函数实在简单的连我这种笨鸟都不想分析,各位大侠就自个看一看吧。
接下来要登场的是一女一男,女的不但身材绝美,面容娇好,身怀绝技,且用情专一,一生只为一个人服务。男的虽然才高八斗,学富五车,但是确是个花心大萝卜,只要能达到他的条件,都会为女方服务,比如我们马上要讲的这位男同志,就只要身材好,漂亮,他就愿意为人家服务。扯了半天,我们的美女就是device,帅哥就是device_driver。总线作为红娘,肯定同一时间不止为一对男女提供机会,<<非诚勿扰>>和<<我们约会吧>>这种市井节目都知道一次邀请多位男女同志一起配对,难道我们英明神武的内核开发者不会?不可能嘛。所以我们内核作者和何炅老师一样的聪明,他分别利用下面这段代码创建了一个美女阵营和一个帅哥阵营。
priv->devices_kset = kset_create_and_add("devices", NULL,
&priv->subsys.kobj); //美女阵营
if (!priv->devices_kset) {
retval = -ENOMEM;
goto bus_devices_fail;
}
priv->drivers_kset = kset_create_and_add("drivers", NULL,
&priv->subsys.kobj); //帅哥阵营
if (!priv->drivers_kset) {
retval = -ENOMEM;
goto bus_drivers_fail;
}
klist_init(&priv->klist_devices, klist_devices_get, klist_devices_put); //美女阵营
klist_init(&priv->klist_drivers, NULL, NULL); //帅哥阵营
接下来就是:
static int add_probe_files(struct bus_type *bus)
{
int retval;
retval = bus_create_file(bus, &bus_attr_drivers_probe);
if (retval)
goto out;
retval = bus_create_file(bus, &bus_attr_drivers_autoprobe);
if (retval)
bus_remove_file(bus, &bus_attr_drivers_probe);
out:
return retval;
}
凭着刚才对bus_attr_uevent 的分析,我们可以利用人本身的惰性来查找上面的几个在sourceinsight下的灰色成员。
是的这两个成员就是:
static BUS_ATTR(drivers_probe, S_IWUSR, NULL, store_drivers_probe);
static BUS_ATTR(drivers_autoprobe, S_IWUSR | S_IRUGO,
show_drivers_autoprobe, store_drivers_autoprobe);
在这里可以告诉大家一个技巧:linux内核在用宏定义这类变量时,都会在需要调用这个变量的最近的地方定义,不会离的很远。
显然,我们会在/sys/bus/wwhs_bus/目录下再创建两个文件:drivers_autoprobe 、drivers_probe。都是很简单的几个函数。列一下吧:
static ssize_t store_drivers_probe(struct bus_type *bus,
const char *buf, size_t count)
{
struct device *dev;
dev = bus_find_device_by_name(bus, NULL, buf);
if (!dev)
return -ENODEV;
if (bus_rescan_devices_helper(dev, NULL) != 0)
return -EINVAL;
return count;
}
static ssize_t show_drivers_autoprobe(struct bus_type *bus, char *buf)
{
return sprintf(buf, "%d/n", bus->p->drivers_autoprobe);
}
static ssize_t store_drivers_autoprobe(struct bus_type *bus,
const char *buf, size_t count)
{
if (buf[0] == '0')
bus->p->drivers_autoprobe = 0;
else
bus->p->drivers_autoprobe = 1;
return count;
}
至此bus_register分析完了,六个文件(目录也是文件)也创建完成了。
休息一下,不抽烟,健康生活,多喝开水,哥先喝口水。^_^