目前,存在着各种计时函数,一般的处理都是先调用计时函数,记下当前时间tstart,然后处理一段程序,再调用计时函数,记下处理后的时间tend,再tend和tstart做差,就可以得到程序的执行时间,但是各种计时函数的精度不一样.下面对各种计时函数,做些简单记录.
方法1,time()获取当前的系统时间,返回的结果是一个time_t类型,其实就是一个大整数,其值表示从CUT(Coordinated Universal Time)时间1970年1月1日00:00:00(称为UNIX系统的Epoch时间)到当前时刻的秒数. 需要使用 #include <ctime>头文件
void test1() { time_t start,stop; start = time(NULL); foo();//dosomething stop = time(NULL); printf("Use Time:%ld\n",(stop-start)); }
方法2,clock()函数返回从“开启这个程序进程”到“程序中调用clock()函数”时之间的CPU时钟计时单元(clock tick)数,在MSDN中称之为挂钟时间(wal-clock)。需要使用 #include <ctime>头文件
常量CLOCKS_PER_SEC,它用来表示一秒钟会有多少个时钟计时单元
void test2() { double dur; clock_t start,end; start = clock(); foo();//dosomething end = clock(); dur = (double)(end - start); printf("Use Time:%f\n",(dur/CLOCKS_PER_SEC)); }
方法3,timeGetTime()函数以毫秒计的系统时间。该时间为从系统开启算起所经过的时间,是windows api。需要使用 #include <windows.h>头文件
void test3() { DWORD t1,t2; t1 = timeGetTime(); foo();//dosomething t2 = timeGetTime(); printf("Use Time:%f\n",(t2-t1)*1.0/1000); }
方法4,QueryPerformanceCounter()这个函数返回高精确度性能计数器的值,它可以以微妙为单位计时.但是QueryPerformanceCounter()确切的精确计时的最小单位是与系统有关的,所以,必须要查询系统以得到QueryPerformanceCounter()返回的嘀哒声的频率.QueryPerformanceFrequency()提供了这个频率值,返回每秒嘀哒声的个数.需要使用 #include <windows.h>头文件
void test4() { LARGE_INTEGER t1,t2,tc; QueryPerformanceFrequency(&tc); QueryPerformanceCounter(&t1); foo();//dosomething QueryPerformanceCounter(&t2); printf("Use Time:%f\n",(t2.QuadPart - t1.QuadPart)*1.0/tc.QuadPart); }
方法5,GetTickCount返回(retrieve)从操作系统启动到现在所经过(elapsed)的毫秒数,它的返回值是DWORD。需要使用 #include <windows.h>头文件
void test5() { DWORD t1,t2; t1 = GetTickCount(); foo();//dosomething t2 = GetTickCount(); printf("Use Time:%f\n",(t2-t1)*1.0/1000); }
方法6,RDTSC指令,在Intel Pentium以上级别的CPU中,有一个称为“时间戳(Time Stamp)”的部件,它以64位无符号整型数的格式,记录了自CPU上电以来所经过的时钟周期数。由于目前的CPU主频都非常高,因此这个部件可以达到纳秒级的计时精度。这个精确性是上述几种方法所无法比拟的.在Pentium以上的CPU中,提供了一条机器指令RDTSC(Read Time Stamp Counter)来读取这个时间戳的数字,并将其保存在EDX:EAX寄存器对中。由于EDX:EAX寄存器对恰好是Win32平台下C++语言保存函数返回值的寄存器,所以我们可以把这条指令看成是一个普通的函数调用,因为RDTSC不被C++的内嵌汇编器直接支持,所以我们要用_emit伪指令直接嵌入该指令的机器码形式0X0F、0X31
inline unsigned __int64 GetCycleCount() { __asm { _emit 0x0F; _emit 0x31; } } void test6() { unsigned long t1,t2; t1 = (unsigned long)GetCycleCount(); foo();//dosomething t2 = (unsigned long)GetCycleCount(); printf("Use Time:%f\n",(t2 - t1)*1.0/FREQUENCY); //FREQUENCY指CPU的频率 }
方法7,gettimeofday() linux环境下的计时函数,int gettimeofday ( struct timeval * tv , struct timezone * tz ),gettimeofday()会把目前的时间有tv所指的结构返回,当地时区的信息则放到tz所指的结构中.
//timeval结构定义为: struct timeval{ long tv_sec; /*秒*/ long tv_usec; /*微秒*/ }; //timezone 结构定义为: struct timezone{ int tz_minuteswest; /*和Greenwich 时间差了多少分钟*/ int tz_dsttime; /*日光节约时间的状态*/ }; void test7() { struct timeval t1,t2; double timeuse; gettimeofday(&t1,NULL); foo(); gettimeofday(&t2,NULL); timeuse = t2.tv_sec - t1.tv_sec + (t2.tv_usec - t1.tv_usec)/1000000.0; printf("Use Time:%f\n",timeuse); }
方法8,linux环境下,用RDTSC指令计时.与方法6是一样的.只不过在linux实现方式有点差异.
#if defined (__i386__) static __inline__ unsigned long long GetCycleCount(void) { unsigned long long int x; __asm__ volatile("rdtsc":"=A"(x)); return x; } #elif defined (__x86_64__) static __inline__ unsigned long long GetCycleCount(void) { unsigned hi,lo; __asm__ volatile("rdtsc":"=a"(lo),"=d"(hi)); return ((unsigned long long)lo)|(((unsigned long long)hi)<<32); } #endif void test8() { unsigned long t1,t2; t1 = (unsigned long)GetCycleCount(); foo();//dosomething t2 = (unsigned long)GetCycleCount(); printf("Use Time:%f\n",(t2 - t1)*1.0/FREQUENCY); //FREQUENCY CPU的频率 }
简单的比较表格如下
序号 | 函数 | 类型 | 精度级别 | 时间 |
1 | time | C系统调用 | 低 | <1s |
2 | clcok | C系统调用 | 低 | <10ms |
3 | timeGetTime | Windows API | 中 | <1ms |
4 | QueryPerformanceCounter | Windows API | 高 | <0.1ms |
5 | GetTickCount | Windows API | 中 | <1ms |
6 | RDTSC | 指令 | 高 | <0.1ms |
7 | gettimeofday | linux环境下C系统调用 | 高 | <0.1ms |
总结,方法1,2,7,8可以在linux环境下执行,方法1,2,3,4,5,6可以在windows环境下执行.其中,timeGetTime()和GetTickCount()的返回值类型为DWORD,当统计的毫妙数过大时,将会使结果归0,影响统计结果.
转载自:http://www.cnblogs.com/dwdxdy/p/3214905.html