- HBase简介
梦醒沉醉
Hadoophbase数据库大数据
目录1.HBase概述2.HBase核心概念2.1行关键字2.2列关键字2.3时间戳2.4单元2.4.1HBase和RDBMS的差异2.4.2HBase组成3.HBase流程3.1Region的分配3.2RegionServer上线3.3RegionServer下线3.4Master上线3.5Master下线3.6写请求处理参考1.HBase概述 HBase是NoSQL(NotOnlySQL,泛
- 如何在Java中设计大规模稀疏数据处理架构
省赚客app开发者
java架构开发语言
如何在Java中设计大规模稀疏数据处理架构大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!在大数据时代,稀疏数据在各个领域变得越来越常见,例如推荐系统、自然语言处理、图像处理等。稀疏数据通常包含大量零值或空值,直接使用传统的数据处理架构可能导致效率低下,内存和计算资源浪费。因此,设计一个高效的稀疏数据处理架构成为Java开发者面临的关键挑战。本文将探讨如何在Java中
- 基于AWS云平台的法律AI应用系统开发方案
weixin_30777913
aws云计算人工智能python
该方案可实现法律文档处理速度提升300%+,关键信息提取准确率可达92%以上(基于实际测试数据),适合构建企业级法律智能中台。建议采用分阶段实施策略,优先实现文档解析和智能问答模块。一、技术栈规划层级技术组件说明存储层AWSS3AmazonOpenSearch(向量数据库)存储原始PDF文件支持向量检索的法律知识库AI服务层OpenAIGPT-4APIAmazonSageMaker(LLM微调)A
- 什么是3D视觉无序抓取?
视觉人机器视觉
机器视觉3D3d人工智能视觉检测计算机视觉c#
3D视觉无序抓取是一种结合三维视觉技术、机器人控制与智能算法的工业自动化解决方案,旨在实现机器人对散乱、无序堆放的物体进行自主识别、定位和抓取的操作。其核心是通过3D视觉系统获取物体的三维空间信息,结合路径规划与避障算法,引导机械臂完成高精度抓取任务,无需依赖预先设定的固定程序或工装夹具。以下是其关键要点:核心组成与技术原理三维视觉感知:采用3D相机(如结构光、双目视觉、ToF技术)扫描物体表面,
- Java中代码的执行顺序(Java基础)
Java搬码工
javaSEjava
在Java里,不同类型代码有着特定的执行顺序,理解这些顺序对掌握程序运行逻辑十分关键。下面将详细阐述Java中不同类型代码(静态代码块、实例代码块、构造方法、静态变量、实例变量、静态方法、实例方法等)的执行顺序。单类中的代码执行顺序当只有一个类时,代码执行顺序通常为:静态变量初始化、静态代码块、实例变量初始化、实例代码块、构造方法。classSingleClassExample{//静态变量sta
- 从热搜趋势到交易策略:Level2逐笔成交数据的应用之道
银河金融数据库
level2逐笔成交逐笔委托区块链金融数据库python
从热搜趋势到交易策略:Level2逐笔成交数据的应用之道为了促进学习和研究,我们在此分享一部分匿名处理的股票level2逐笔委托逐笔成交历史行情数据集。股票level2逐笔委托逐笔成交历史行情数据集链接:https://pan.baidu.com/s/1jSeHGNOs8akYsFfjs9WMSw?pwd=crfj提取码:crfj请注意,分享这些数据的目的是为了教育和研究,不构成任何投资建议。关键
- 模型GPU->NPU(Ascend)迁移训练简述
終不似少年遊*
深度学习人工智能迁移学习GPUNPU华为云
目录一、迁移训练流程图解二、详细流程步骤1.模型训练与日志记录2.跨平台精度对齐对比3.问题定位与修复4.迭代验证三、关键技术点四、常见问题与解决方案一、迁移训练流程图解通过华为云的modelart进行运行环境选型北京四使用GPU进行模型训练,生成gpulog.json文件,记录损失函数等信息。然后,使用ptdbg_ascend工具进行精度收集,生成dump文件,由于文件过大,上传到obs桶。贵阳
- STAR法则是一种结构化的面试和自我评估工具,包括情境(Situation)、任务(Task)、行动(Action)、结果(Result)四个要素。以下为你介绍它的运用方法并举例
南北极之间
职场和发展面试沟通表达
STAR法则是一种结构化的面试和自我评估工具,包括情境(Situation)、任务(Task)、行动(Action)、结果(Result)四个要素。以下为你介绍它的运用方法并举例:运用方法情境(Situation):描述事件发生的背景、环境,包括时间、地点、人物等关键信息,让他人清楚了解事情发生的来龙去脉。任务(Task):明确在该情境下需要完成的任务或目标,任务阐述应具体、清晰,突出重点与难点。
- [0750]基于JAVA的卫生监管智慧管理系统的设计与实现
阿鑫学长【毕设工场】
java人工智能开发语言课程设计毕业设计
毕业设计(论文)开题报告表姓名学院专业班级题目基于JAVA的卫生监管智慧管理系统的设计与实现指导老师(一)选题的背景和意义在当前我国卫生监管体系快速发展的背景下,信息化、智能化已成为提升监管效能和公共服务质量的关键手段。随着各类医疗卫生机构数量的增长和服务范围的拓宽,传统的管理模式已难以满足日益复杂的监管需求,尤其是在数据处理、权限控制、事件响应、知识更新、培训考核、任务调度、记录追踪等方面存在明
- 项目管理五大基本要素是什么
项目管理
项目管理的五大基本要素包括:时间、成本、质量、资源、范围。这些要素共同构成了项目成功的基础,通过有效地管理这些要素,项目经理能够确保项目按时、按质、按预算顺利完成。其中,时间管理是确保项目按计划推进的关键,而成本管理则是项目控制的重要方面。本文将深入探讨这些基本要素的定义及其在实际项目管理中的应用,并结合实际案例进行详细分析。一、时间管理、成本管理时间管理和成本管理是项目管理中最为关键的两个要素。
- DeepSeek vs ChatGPT:大模型技术路径的“分水岭”与行业颠覆性创新——2025年AI领域生态重构与场景革命深度观察
富 贵 儿 ¥
人工智能开发语言大数据python
引言:从“参数竞赛”到“场景战争”的范式转移2025年,全球AI产业正经历从“技术崇拜”到“价值落地”的关键转折。当OpenAI、Google等巨头仍执着于千亿参数堆砌时,中国团队打造的DeepSeek以“场景穿透力”异军突起。这场较量不仅是技术架构的对垒,更是AI商业化逻辑的根本性变革。本文基于独家技术拆解与300+企业落地案例调研,揭示两大模型如何重塑行业规则。一、技术架构革命:MoEvsTr
- 商业计划书代写?别浪费钱
TNT_13302909089
商业计划书代写商业计划书创业计划书
商业计划书包含的范围很广,但一般离不开以下题目:经营者的理念、市场、客户、比较优势、管理团队、财务预测、风险因素等等。对市场的分析应由大入小,从宏观到微观,以数据为基础,深刻的描述公司/项目在市场中将争取的定位。对比较优势,应在非常清楚本身强弱情况及竞争对手的战略而作分析。至于管理团队,应从各人的背景及经验分析其对公司/项目中不同岗位的作用。财务预测是关键的,应将绝大部分的假设及其所引致的财务影响
- 如何提升爬虫获取数据的准确性?
小爬虫程序猿
爬虫
提升爬虫获取数据的准确性是确保数据分析和后续应用有效性的关键。以下是一些经过验证的方法和最佳实践,可以帮助提高爬虫数据的准确性:1.数据清洗数据清洗是提升数据准确性的重要步骤,主要包括去除重复数据、处理缺失值和异常值。去除重复数据:重复数据会影响分析结果的准确性,可以通过pandas库的drop_duplicates()方法删除重复数据。importpandasaspddf=pd.DataFram
- 图论- 经典最小生成树算法
左灯右行的爱情
图论算法
最小生成树算法什么是最小生成树Kruskal算法关键代码实现Prim最小生成树算法Kruskal和Prim算法的区别为什么Prim算法不需要判断成环,但Kruskal需要什么是最小生成树在图中找一棵包含图中所有节点的树,且权重和最小的那棵树就叫最小生成树.如下:右侧生成树的权重和显然比左侧生成树的权重和要小。(但是它并不是最小的,这里只是比较一下不同的树)Kruskal算法最小生成树是若干条边的集
- 用AI提升电商平台的客户体验:从个性化推荐到智能客服
Echo_Wish
人工智能前沿技术人工智能
用AI提升电商平台的客户体验:从个性化推荐到智能客服随着电商行业的竞争日益激烈,如何在海量商品中脱颖而出,吸引和保持客户的关注,成为平台生存和发展的关键。而在这场竞争中,人工智能(AI)正在发挥着越来越重要的作用。AI不仅可以优化电商平台的后台操作,还能在前端提供更为个性化、智能化的客户体验,让消费者感受到前所未有的便捷与高效。本文将从个性化推荐、智能客服、智能搜索等方面,详细探讨如何通过AI技术
- 【云原生进阶之数据库技术】第四章-GaussDB-关键技术-2.4.1-GaussDB存储引擎层关键技术方案
江中散人
云原生进阶-数据库专栏云原生进阶-PaaS专栏后台开发专栏数据库云原生gaussdbdatabase存储引擎
1存储引擎概览早期计算机程序通过文件系统管理数据,到了20世纪60年代这种方式就开始不能满足数据管理要求了,用户逐渐对数据并发写入的完整性、高效的检索提出更高的要求。由于机械磁盘的随机读写性能问题,从20世纪80年代开始,大多数数据库一直围绕着减少随机读写磁盘进行设计。主要思路是把对数据页面的随机写盘转化为对WAL(WriteAheadLog,预写式日志)的顺序写盘,WAL持久化完成,事务就算提交
- 什么是GaussDB
如清风一般
gaussdb
什么是GaussDB简介GaussDB是华为自主创新研发的分布式关系型数据库。该产品具备企业级复杂事务混合负载能力,同时支持分布式事务,同城跨AZ部署,数据0丢失,支持1000+的扩展能力,PB级海量存储。同时拥有云上高可用,高可靠,高安全,弹性伸缩,一键部署,快速备份恢复,监控告警等关键能力,能为企业提供功能全面,稳定可靠,扩展性强,性能优越的企业级数据库服务。应用场景交易型应用大并发、大数据量
- sql语句order by与limit的使用
邂逅you
SQL语句与MySQL数据库sql数据库
一、orderby简介ORDERBY关键字用于对结果集进行「排序」。1、orderby的作用ORDERBY关键字可以使查询返回的「结果集」按照指定的列进行排序,可以按照某「一列」排序或者同时按照「多列」进行排序,排序的顺序可以是「升序」或者「降序」。2、语法格式selectcolumn_name,column_namefromtable_nameorderbycolumn_nameasc|desc
- 【OSTEP】操作系统导论-精翻讲解:第五章-进程API
Refulic.
linux运维服务器
写在前面:学习操作系统是一个漫长且容易迷茫的过程。这本书在我的学习过程中给予了很大的帮助。本文将尽量精简内容,仅保留关键部分,并对学习中遇到的难点进行注释和解释。希望这能为初学者提供一些帮助和指引。本文所有涉及的图片及内容皆引用自:OperatingSystems:ThreeEasyPieces作者:RemziH.Arpaci-DusseauandAndreaC.Arpaci-Dusseau(Un
- 连锁订货系统的订单处理流程解析
连锁企业管理系统
连锁收银系统连锁订货系统
连锁订货系统的订单处理流程,是确保商品从供应商高效流转至各连锁门店的关键环节,涉及多个紧密相扣的步骤。以下将以核货宝连锁订货系统为例,详细解析其订单处理流程:1.订单创建:连锁门店工作人员通过核货宝系统,依据门店库存状况、销售预测以及顾客需求,挑选所需商品,录入商品数量、规格等信息,完成订单创建。比如某连锁便利店发现薯片库存不足,店员在系统中选中对应品牌、口味的薯片,输入补货数量,提交订单。2.订
- 一个财务做的python代码--PDF发票文件信息提取
宾不可
pdfpython职场和发展
一、引言(我为什么做)随着国家不断推行数字发票,现在工作中越来越多的电子发票被收取和开具。这给财务人员高效登记大量发票信息提供了充足的环境。日常中,手动从每张发票中提取关键信息并录入Excel表格不仅耗时费力,还容易出错。本文提出了一种基于Python的自动化解决方案,该方案利用pdfplumber库从PDF格式的电子发票中提取文本信息,并结合正则表达式进行信息匹配和清洗,最后将整理好的数据自动写
- elementUI tree树形控件 根据数据动态设置禁用,全选时不可选中禁用数据
xuelong-ming
elementUI前端elementui前端
需求根据后端返回的数据禁用数据,将tree结构对应的数据设置为禁用状态,并且在点击全选后不可选中禁用数据。效果根据数据动态设置禁用全选时不可选中禁用数据代码...全部员工.........exportdefault{importAPIfrom'@/api.js'...data(){return{...checkAll:false,//是否全选filterText:'',//关键字过滤deptUse
- 机器视觉--图像的运算(加法)
C#Thread
机器视觉计算机视觉图像处理人工智能
一、引言在机器视觉领域,Halcon是一款功能强大且广泛应用的机器视觉软件库。图像的加法运算是其中一种基础且重要的操作,它在很多实际应用场景中都发挥着关键作用,比如图像增强、图像融合等。本文将深入探讨Halcon中图像加法运算的原理、实现方法,并通过具体的演示程序来帮助读者更好地理解和掌握这一操作。二、Halcon图像加法运算原理在Halcon中,图像的加法运算本质上是对两幅图像对应像素点的灰度值
- AI 大模型应用数据中心建设:高性能计算与存储架构
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《AI大模型应用数据中心建设:高性能计算与存储架构》关键词:AI大模型,数据中心建设,高性能计算,存储架构,分布式系统,能耗优化,运维管理。摘要:本文深入探讨了AI大模型应用数据中心建设中的高性能计算与存储架构。首先回顾了AI大模型的发展历程和数据中心的含义,然后详细解析了高性能计算架构,包括计算节点、编程模型和网络技术。接着,讨论了存储架构,包括存储类型、分布式存储系统和数据一致性策略。本文还提
- MobPush智能推送系统的用户行为分析:驱动精准运营的核心引擎
数据库
MobPush智能推送系统的用户行为分析:驱动精准运营的核心引擎在移动应用竞争白热化的今天,用户注意力成为最稀缺的资源。APP企业纷纷引入MobPush智能推送系统,其核心价值在于通过用户行为分析实现精准触达。这种技术不仅改变了传统"广撒网"式的推送策略,更成为用户留存和商业转化的关键武器。本文将从实践效果与典型案例维度,解析MobPush智能推送系统如何重构用户运营逻辑。实践效果:从经验驱动到数
- C++11 学习笔记
毛驴要倒着骑
c++学习笔记
EffectiveModernC++第一章新特性类型推导auto关键字:隐式定义,也是强类型定义。在编译期让编译器自动推断出变量类型以便分配内存,必须在定义时进行初始化decltype关键字:获取表达式的类型typedef重定义一个模板需要借助外敷类,但是using别名语法覆盖了typedef全部功能。使用using重定义模板会更简洁,定义函数指针会更加清晰。templatestructstr_m
- Python关键字终极指南:36个核心关键词详解+实战示例,带你彻底掌握
编程梦想记
python开发语言
以下是Python中的关键字(基于Python3.11版本,共**36个**),按功能分类解释它们的核心用途和常见场景。每个关键字都会用通俗易懂的语言和代码示例说明。一、控制程序流程的关键字1.**`if`/`elif`/`else`**-**用途**:条件判断。-**示例**:```pythonage=18ifage=18andage<=60:print("成年人")```14.**`is`**
- 从零构建高可用MySQL集群:Percona XtraDB Cluster 实战部署
Deutsch.
mysql数据库
实战指南:基于PerconaXtraDBCluster构建高可用MySQL集群架构引言:为什么选择PXC?PerconaXtraDBCluster(PXC)是基于Galera协议的MySQL高可用解决方案,提供同步多主复制、数据强一致性等关键特性,特别适合需要高可用性和数据完整性的金融、电商等场景。一、环境规划与准备工作1.1集群拓扑设计主机IP(CentOS7.x)节点角色172.25.254.
- C语言中的类型转换:自动与强制转换的全解析
时倾708
c语言c++算法
在编写C程序时,类型转换是确保数据正确性和一致性的关键环节。无论是隐式转换还是显式转换,都各有特点和应用场景。本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在实际编码中灵活运用这些知识。类型转换的重要性类型转换是确保程序正确运行的重要基础。在不同数据类型之间进行操作时,编译器需要确保数据的一致性。无论是隐式转换还是显式转换,都在不同的情境下发挥着不可或缺的作用。自动类型转换(隐式转换)自
- C++11之constexpr
kazamata
C++c++学习笔记visualstudio
注:大前提,本篇文章是在介绍C++11中的constexpr,自C++14以来constexpr有了非常大的改动,如在实验中遇见与本文不符的地方还先请查阅其他资料,确定为本文错误后可留言,我会虚心接受并改正。constexpr定义编译时常量在C++11中添加了一个新的关键字constexpr,这个关键字是用来修饰常量表达式的。所谓常量表达式,指的就是由多个(≥1)常量(值不会改变)组成并且在编译过
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,