Python yield 使用浅析

简介: 初学 Python 的开发者经常会发现很多 Python 函数中用到了 yield 关键字,然而,带有 yield 的函数执行流程却和普通函数不一样,yield 到底用来做什么,为什么要设计 yield ?本文将由浅入深地讲解 yield 的概念和用法,帮助读者体会 Python 里 yield 简单而强大的功能。

 

您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?

我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。

如何生成斐波那契數列

斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:

清单 1. 简单输出斐波那契數列前 N 个数

                                        

 def fab(max):

    n, a, b = 0, 0, 1

    while n < max:

        print b

        a, b = b, a + b

        n = n + 1



执行 fab(5),我们可以得到如下输出:

 >>> fab(5)

 1

 1

 2

 3

 5



结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。

要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:

清单 2. 输出斐波那契數列前 N 个数第二版

                                        

 def fab(max):

    n, a, b = 0, 0, 1

    L = []

    while n < max:

        L.append(b)

        a, b = b, a + b

        n = n + 1

    return L



可以使用如下方式打印出 fab 函数返回的 List:

 >>> for n in fab(5):

 ...     print n

 ...

 1

 1

 2

 3

 5



改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List

来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:

清单 3. 通过 iterable 对象来迭代

                                        

 for i in range(1000): pass


会导致生成一个 1000 个元素的 List,而代码:

 for i in xrange(1000): pass


则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。

利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:

清单 4. 第三个版本

                                        

 class Fab(object):

 

    def __init__(self, max):

        self.max = max

        self.n, self.a, self.b = 0, 0, 1

 

    def __iter__(self):

        return self

 

    def next(self):

        if self.n < self.max:

            r = self.b

            self.a, self.b = self.b, self.a + self.b

            self.n = self.n + 1

            return r

        raise StopIteration()



Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:

 >>> for n in Fab(5):

 ...     print n

 ...

 1

 1

 2

 3

 5



然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:

清单 5. 使用 yield 的第四版

                                        

 def fab(max):

    n, a, b = 0, 0, 1

    while n < max:

        yield b

        # print b

        a, b = b, a + b

        n = n + 1

 

'''

第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。

调用第四版的 fab 和第二版的 fab 完全一致:

 >>> for n in fab(5):

 ...     print n

 ...

 1

 1

 2

 3

 5

简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。

也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:、


清单 6. 执行流程

                                        

 >>> f = fab(5)

 >>> f.next()

 1

 >>> f.next()

 1

 >>> f.next()

 2

 >>> f.next()

 3

 >>> f.next()

 5

 >>> f.next()

 Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

 StopIteration



当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

我们可以得出以下结论:

一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:


清单 7. 使用 isgeneratorfunction 判断

                                        

 >>> from inspect import isgeneratorfunction

 >>> isgeneratorfunction(fab)

 True


要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:


清单 8. 类的定义和类的实例

                                        

 >>> import types

 >>> isinstance(fab, types.GeneratorType)

 False

 >>> isinstance(fab(5), types.GeneratorType)

 True



fab 是无法迭代的,而 fab(5) 是可迭代的:

 >>> from collections import Iterable

 >>> isinstance(fab, Iterable)

 False

 >>> isinstance(fab(5), Iterable)

 True



每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:

 >>> f1 = fab(3)

 >>> f2 = fab(5)

 >>> print 'f1:', f1.next()

 f1: 1

 >>> print 'f2:', f2.next()

 f2: 1

 >>> print 'f1:', f1.next()

 f1: 1

 >>> print 'f2:', f2.next()

 f2: 1

 >>> print 'f1:', f1.next()

 f1: 2

 >>> print 'f2:', f2.next()

 f2: 2

 >>> print 'f2:', f2.next()

 f2: 3

 >>> print 'f2:', f2.next()

 f2: 5


return 的作用

在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。


另一个例子

另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:


清单 9. 另一个 yield 的例子

                                        

 def read_file(fpath):

    BLOCK_SIZE = 1024

    with open(fpath, 'rb') as f:

        while True:

            block = f.read(BLOCK_SIZE)

            if block:

                yield block

            else:

                return



以上仅仅简单介绍了 yield 的基本概念和用法,yield 在 Python 3 中还有更强大的用法,我们会在后续文章中讨论。

注:本文的代码均在 Python 2.7 中调试通过



参考资料

学习

  • 随时关注 developerWorks 技术活动和 网络广播
  • 访问 developerWorks Open source 专区获得丰富的 how-to 信息、工具和项目更新以及 最受欢迎的文章和教程,帮助您用开放源码技术进行开发,并将它们与 IBM 产品结合使用。

讨论

  • 加入 developerWorks 中文社区,developerWorks 社区是一个面向全球 IT 专业人员,可以提供博客、书签、wiki、群组、联系、共享和协作等社区功能的专业社交网络社区。
  • 加入 IBM 软件下载与技术交流群组,参与在线交流。


关于作者

廖雪峰,精通 Java/Java EE/Java ME/Android/Python/C#/Visual Basic,对开源框架有深入研究,著有《Spring 2.0 核心技术与最佳实践》一书,创建有开源框架 JOpenID,其官方博客是 http://www.liaoxuefeng.com/ 和 http://michael-liao.appspot.com/。


你可能感兴趣的:(Python yield 使用浅析)