题目:http://poj.org/problem?id=3261
题意:给你一个序列,求序列里重复出现至少K次的最长子串
分析:这题如果学过后缀数组的话,那就是模版题了,直接构造一个后缀数组,然后枚举i,询问[ i, i+k-1 ] 的最长公共前缀就行,i表示排在第i位的后缀
代码:
/** head files*/ #include <cstdlib> #include <cctype> #include <cstring> #include <cstdio> #include <cmath> #include <algorithm> #include <vector> #include <string> #include <iostream> #include <sstream> #include <map> #include <set> #include <queue> #include <stack> #include <fstream> #include <numeric> #include <iomanip> #include <bitset> #include <list> #include <stdexcept> #include <functional> #include <utility> #include <ctime> using namespace std; /** some operate*/ #define PB push_back #define MP make_pair #define REP(i,n) for(i=0;i<(n);++i) #define UPTO(i,l,h) for(i=(l);i<=(h);++i) #define DOWN(i,h,l) for(i=(h);i>=(l);--i) #define MSET(arr,val) memset(arr,val,sizeof(arr)) #define MAX3(a,b,c) max(a,max(b,c)) #define MAX4(a,b,c,d) max(max(a,b),max(c,d)) #define MIN3(a,b,c) min(a,min(b,c)) #define MIN4(a,b,c,d) min(min(a,b),min(c,d)) /** some const*/ #define N 222222 #define M 222222 #define PI acos(-1.0) #define oo 1111111111 /** some alias*/ typedef long long ll; /** Global variables*/ /** some template names, just push ctrl+j to get it in*/ //manacher 求最长回文子串 //pqueue 优先队列 //combk n元素序列的第m小的组合和 //pmatrix n个点的最大子矩阵 //suffixarray 后缀数组 template <typename T, int LEN> struct suffixarray { int str[LEN*3],sa[LEN*3]; int rank[LEN],height[LEN]; int id[LEN]; int best[LEN][20]; int len; bool equal(int *str, int a, int b) { return str[a]==str[b]&&str[a+1]==str[b+1]&&str[a+2]==str[b+2]; } bool cmp3(int *str, int *nstr, int a, int b) { if(str[a]!=str[b])return str[a]<str[b]; if(str[a+1]!=str[b+1])return str[a+1]<str[b+1]; return nstr[a+b%3]<nstr[b+b%3]; } void radixsort(int *str, int *sa, int *res, int n, int m) { int i; REP(i,m)id[i]=0; REP(i,n)++id[str[sa[i]]]; REP(i,m)id[i+1]+=id[i]; DOWN(i,n-1,0)res[--id[str[sa[i]]]]=sa[i]; } void dc3(int *str, int *sa, int n, int m) { #define F(x) ((x)/3+((x)%3==1?0:one)) #define G(x) ((x)<one?(x)*3+1:((x)-one)*3+2) int *nstr=str+n, *nsa=sa+n, *tmpa=rank, *tmpb=height; int i,j,k,len=0,num=0,zero=0,one=(n+1)/3; REP(i,n)if(i%3)tmpa[len++]=i; str[n]=str[n+1]=0; radixsort(str+2, tmpa, tmpb, len, m); radixsort(str+1, tmpb, tmpa, len, m); radixsort(str+0, tmpa, tmpb, len, m); nstr[F(tmpb[0])]=num++; UPTO(i,1,len-1) nstr[F(tmpb[i])]=equal(str,tmpb[i-1],tmpb[i])?num-1:num++; if(num<len)dc3(nstr,nsa,len,num); else REP(i,len)nsa[nstr[i]]=i; if(n%3==1)tmpa[zero++]=n-1; REP(i,len)if(nsa[i]<one)tmpa[zero++]=nsa[i]*3; radixsort(str, tmpa, tmpb, zero, m); REP(i,len)tmpa[nsa[i]=G(nsa[i])]=i; i=j=0; REP(k,n) if(j>=len||(i<zero&&cmp3(str,tmpa,tmpb[i],nsa[j])))sa[k]=tmpb[i++]; else sa[k]=nsa[j++]; } void initSA(T *s, int n,int m) { int i,j,k=0; str[len=n]=0; REP(i,n)str[i]=s[i]; dc3(str,sa,n+1,m); REP(i,n)sa[i]=sa[i+1]; REP(i,n)rank[sa[i]]=i; REP(i,n) { if(k)--k; if(rank[i])for(j=sa[rank[i]-1];str[i+k]==str[j+k];++k); else k=0; height[rank[i]]=k; } } void initRMQ() { int i,j; REP(i,len)best[i][0]=height[i]; for(j=1;(1<<j)-1<len;++j) for(i=0;i+(1<<j)-1<len;++i) best[i][j]=min(best[i][j-1],best[i+(1<<(j-1))][j-1]); } int RMQ(int l, int r) { int k=0; while(l+(1<<k)-1+1<r-(1<<k)+1)++k; return min(best[l][k],best[r-(1<<k)+1][k]); } int LCPSA(int a, int b) { if(a==b)return len-sa[a]; if(++a>b)swap(a,b); return RMQ(a,b); } }; suffixarray<int,N> msa; map<int ,int > mymap; int s[N]; int main() { int i,n,m,k,ans; while(~scanf("%d%d",&n,&k)) { mymap.clear(); m=1; REP(i,n) { scanf("%d",&s[i]); if(mymap.find(s[i])==mymap.end()) mymap[s[i]]=m++; s[i]=mymap[s[i]]; } msa.initSA(s,n,m); msa.initRMQ(); ans=0; REP(i,n) if(i+k-1<n) ans=max(ans,msa.LCPSA(i,i+k-1)); printf("%d",ans); } return 0; }