java.util.concurrent 多线程框架

转载:(来源于http://www.zhuaxia.com/item/590227619/)

JDK5中的一个亮点就是将Doug Lea的并发库引入到Java标准库中。Doug Lea确实是一个牛人,能教书,能出书,能编码,不过这在国外还是比较普遍的,而国内的教授们就相差太远了。 

一般的服务器都需要线程池,比如Web、FTP等服务器,不过它们一般都自己实现了线程池,比如以前介绍过的Tomcat、Resin和Jetty等,现在有了JDK5,我们就没有必要重复造车轮了,直接使用就可以,何况使用也很方便,性能也非常高。  

package concurrent;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class TestThreadPool {
	public static void main(String args[]) throws InterruptedException {
		// only two threads
		ExecutorService exec = Executors.newFixedThreadPool(2);
		for(int index = 0; index < 100; index++) {
			Runnable run = new Runnable() {
				public void run() {
					long time = (long) (Math.random() * 1000);
					System.out.println("Sleeping " + time + "ms");
					try {
						Thread.sleep(time);
					} catch (InterruptedException e) {
					}
				}
			};
			exec.execute(run);
		}
		// must shutdown
		exec.shutdown();
	}
}

上面是一个简单的例子,使用了2个大小的线程池来处理100个线程。但有一个问题:在for循环的过程中,会等待线程池有空闲的线程,所以主线程会阻塞的。为了解决这个问题,一般启动一个线程来做for循环,就是为了避免由于线程池满了造成主线程阻塞。不过在这里我没有这样处理。[重要修正:经过测试,即使线程池大小小于实际线程数大小,线程池也不会阻塞的,这与Tomcat的线程池不同,它将Runnable实例放到一个“无限”的BlockingQueue中,所以就不用一个线程启动for循环,Doug Lea果然厉害] 

另外它使用了Executors的静态函数生成一个固定的线程池,顾名思义,线程池的线程是不会释放的,即使它是Idle。这就会产生性能问题,比如如果线程池的大小为200,当全部使用完毕后,所有的线程会继续留在池中,相应的内存和线程切换(while(true)+sleep循环)都会增加。如果要避免这个问题,就必须直接使用ThreadPoolExecutor()来构造。可以像Tomcat的线程池一样设置“最大线程数”、“最小线程数”和“空闲线程keepAlive的时间”。通过这些可以基本上替换Tomcat的线程池实现方案。 

需要注意的是线程池必须使用shutdown来显式关闭,否则主线程就无法退出。shutdown也不会阻塞主线程。 

许多长时间运行的应用有时候需要定时运行任务完成一些诸如统计、优化等工作,比如在电信行业中处理用户话单时,需要每隔1分钟处理话单;网站每天凌晨统计用户访问量、用户数;大型超时凌晨3点统计当天销售额、以及最热卖的商品;每周日进行数据库备份;公司每个月的10号计算工资并进行转帐等,这些都是定时任务。通过 java的并发库concurrent可以轻松的完成这些任务,而且非常的简单。 

package concurrent;
import static java.util.concurrent.TimeUnit.SECONDS;
import java.util.Date;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ScheduledFuture;
public class TestScheduledThread {
	public static void main(String[] args) {
		final ScheduledExecutorService scheduler = Executors
		.newScheduledThreadPool(2);
		final Runnable beeper = new Runnable() {
			int count = 0;
			public void run() {
				System.out.println(new Date() + " beep " + (++count));
			}
		};
		// 1秒钟后运行,并每隔2秒运行一次
		final ScheduledFuture beeperHandle = scheduler.scheduleAtFixedRate(
				beeper, 1, 2, SECONDS);
		// 2秒钟后运行,并每次在上次任务运行完后等待5秒后重新运行
		final ScheduledFuture beeperHandle2 = scheduler
		.scheduleWithFixedDelay(beeper, 2, 5, SECONDS);
		// 30秒后结束关闭任务,并且关闭Scheduler
		scheduler.schedule(new Runnable() {
			public void run() {
				beeperHandle.cancel(true);
				beeperHandle2.cancel(true);
				scheduler.shutdown();
			}
		}, 30, SECONDS);
	}
}

为了退出进程,上面的代码中加入了关闭Scheduler的操作。而对于24小时运行的应用而言,是没有必要关闭Scheduler的。 

在实际应用中,有时候需要多个线程同时工作以完成同一件事情,而且在完成过程中,往往会等待其他线程都完成某一阶段后再执行,等所有线程都到达某一个阶段后再统一执行。 

比如有几个旅行团需要途经深圳、广州、韶关、长沙最后到达武汉。旅行团中有自驾游的,有徒步的,有乘坐旅游大巴的;这些旅行团同时出发,并且每到一个目的地,都要等待其他旅行团到达此地后再同时出发,直到都到达终点站武汉。 

这时候CyclicBarrier就可以派上用场。CyclicBarrier最重要的属性就是参与者个数,另外最要方法是await()。当所有线程都调用了await()后,就表示这些线程都可以继续执行,否则就会等待。 

package concurrent;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class TestCyclicBarrier {
	// 徒步需要的时间: Shenzhen, Guangzhou, Shaoguan, Changsha, Wuhan
	private static int[] timeWalk = { 5, 8, 15, 15, 10 };
	// 自驾游
	private static int[] timeSelf = { 1, 3, 4, 4, 5 };
	// 旅游大巴
	private static int[] timeBus = { 2, 4, 6, 6, 7 };

	static String now() {
		SimpleDateFormat sdf = new SimpleDateFormat("HH:mm:ss");
		return sdf.format(new Date()) + ": ";
	}

	static class Tour implements Runnable {
		private int[] times;
		private CyclicBarrier barrier;
		private String tourName;
		public Tour(CyclicBarrier barrier, String tourName, int[] times) {
			this.times = times;
			this.tourName = tourName;
			this.barrier = barrier;
		}
		public void run() {
			try {
				Thread.sleep(times[0] * 1000);
				System.out.println(now() + tourName + " Reached Shenzhen");
				barrier.await();
				Thread.sleep(times[1] * 1000);
				System.out.println(now() + tourName + " Reached Guangzhou");
				barrier.await();
				Thread.sleep(times[2] * 1000);
				System.out.println(now() + tourName + " Reached Shaoguan");
				barrier.await();
				Thread.sleep(times[3] * 1000);
				System.out.println(now() + tourName + " Reached Changsha");
				barrier.await();
				Thread.sleep(times[4] * 1000);
				System.out.println(now() + tourName + " Reached Wuhan");
				barrier.await();
			} catch (InterruptedException e) {
			} catch (BrokenBarrierException e) {
			}
		}
	}

	public static void main(String[] args) {
		// 三个旅行团
		CyclicBarrier barrier = new CyclicBarrier(3);
		ExecutorService exec = Executors.newFixedThreadPool(3);
		exec.submit(new Tour(barrier, "WalkTour", timeWalk));
		exec.submit(new Tour(barrier, "SelfTour", timeSelf));
		exec.submit(new Tour(barrier, "BusTour", timeBus));
		exec.shutdown();
	}
}

运行结果: 
00:02:25: SelfTour Reached Shenzhen 
00:02:25: BusTour Reached Shenzhen 
00:02:27: WalkTour Reached Shenzhen 
00:02:30: SelfTour Reached Guangzhou 
00:02:31: BusTour Reached Guangzhou 
00:02:35: WalkTour Reached Guangzhou 
00:02:39: SelfTour Reached Shaoguan 
00:02:41: BusTour Reached Shaoguan 

并发库中的BlockingQueue是一个比较好玩的类,顾名思义,就是阻塞队列。该类主要提供了两个方法put()和take(),前者将一个对象放到队列中,如果队列已经满了,就等待直到有空闲节点;后者从head取一个对象,如果没有对象,就等待直到有可取的对象。 

下面的例子比较简单,一个读线程,用于将要处理的文件对象添加到阻塞队列中,另外四个写线程用于取出文件对象,为了模拟写操作耗时长的特点,特让线程睡眠一段随机长度的时间。另外,该Demo也使用到了线程池和原子整型(AtomicInteger),AtomicInteger可以在并发情况下达到原子化更新,避免使用了synchronized,而且性能非常高。由于阻塞队列的put和take操作会阻塞,为了使线程退出,特在队列中添加了一个“标识”,算法中也叫“哨兵”,当发现这个哨兵后,写线程就退出。 

当然线程池也要显式退出了。 


package concurrent;
import java.io.File;
import java.io.FileFilter;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.atomic.AtomicInteger;

public class TestBlockingQueue {
	static long randomTime() {
		return (long) (Math.random() * 1000);
	}

	public static void main(String[] args) {
		// 能容纳100个文件
		final BlockingQueue queue = new LinkedBlockingQueue(100);
		// 线程池
		final ExecutorService exec = Executors.newFixedThreadPool(5);
		final File root = new File("F:\\JavaLib”);
				// 完成标志
				final File exitFile = new File("”);
						// 读个数
						final AtomicInteger rc = new AtomicInteger();
						// 写个数
						final AtomicInteger wc = new AtomicInteger();
						// 读线程
						Runnable read = new Runnable() {
							public void run() {
								scanFile(root);
								scanFile(exitFile);
							}

							public void scanFile(File file) {
								if (file.isDirectory()) {
									File[] files = file.listFiles(new FileFilter() {
										public boolean accept(File pathname) {
											return pathname.isDirectory()
											|| pathname.getPath().endsWith(".java”);
										}
									});
											for (File one : files)
												scanFile(one);
								} else {
									try {
										int index = rc.incrementAndGet();
										System.out.println("Read0: ” + index + ” "
												+ file.getPath());
										queue.put(file);
									} catch (InterruptedException e) {
									}
								}
							}
						};
						exec.submit(read);
						// 四个写线程
						for (int index = 0; index < 4; index++) {
							// write thread
							final int NO = index;
							Runnable write = new Runnable() {
								String threadName = "Write” + NO;
									public void run() {
									while (true) {
										try {
											Thread.sleep(randomTime());
											int index = wc.incrementAndGet();
											File file = queue.take();
											// 队列已经无对象
											if (file == exitFile) {
												// 再次添加”标志”,以让其他线程正常退出
												queue.put(exitFile);
												break;
											}
											System.out.println(threadName + ": ” + index + ” "
													+ file.getPath());
										} catch (InterruptedException e) {
										}
									}
								}
							};
							exec.submit(write);
						}
						exec.shutdown();
	}
}


从名字可以看出,CountDownLatch是一个倒数计数的锁,当倒数到0时触发事件,也就是开锁,其他人就可以进入了。在一些应用场合中,需要等待某个条件达到要求后才能做后面的事情;同时当线程都完成后也会触发事件,以便进行后面的操作。 


CountDownLatch最重要的方法是countDown()和await(),前者主要是倒数一次,后者是等待倒数到0,如果没有到达0,就只有阻塞等待了。 

一个CountDouwnLatch实例是不能重复使用的,也就是说它是一次性的,锁一经被打开就不能再关闭使用了,如果想重复使用,请考虑使用CyclicBarrier。 

下面的例子简单的说明了CountDownLatch的使用方法,模拟了100米赛跑,10名选手已经准备就绪,只等裁判一声令下。当所有人都到达终点时,比赛结束。 

同样,线程池需要显式shutdown。 


你可能感兴趣的:(多线程,tomcat,框架,String,File)