第六章 总结和讨论 |
第 6.1. 节 总结 ... 第 6.2. 节 讨论 ... 第6.1.节 总结信息抽取是近十年来新发展起来的领域。 MUC 等国际研讨会给予高度关注,并提出了评价这类系统的方法,定义了评价指标体系。 信息抽取技术的研究对象包括结构化、半结构化和自由式文档。对于自由式文档,多数采用了自然语言处理的方法,而其他两类文档的处理则多数是基于分隔符的。 网页是信息抽取技术研究的重点之一。通常用分装器从一特定网站上抽取信息。用一系列能处理不同网站的分装器就能将数据统一表示,并获得它们之间的关系。 分装器的建造通常是费事费力的,而且需要专门知识。加上网页动态变化,维护分装器的成本将很高。因此,如何自动构建分装器便成为主要的问题。通常采用的方法包括基于归纳学习的机器学习方法。 有若干研究系统被开发出来。这些系统使用机器学习算法针对网上信息源生成抽取规则。 ShopBot , WIEN , SoftMealy 和 STALKER 生成的分装器以分隔符为基础,能处理结构化程度高的网站。 RAPIER , WHISK 和 SRV 能处理结构化程度稍差的信息源。所采用的抽取方法与传统的 IE 方法一脉相承,而学习算法多用关系学习法。 网站信息抽取和分装器生成技术可在一系列的应用领域内发挥作用。目前只有比价购物方面的商业应用比较成功,而最出色的系统包括 Jango , Junglee 和 MySimon 。 第6.2.节 讨论目前的搜索引擎并不能收集到网上数据库内的信息。根据用户的查询请求,搜索引擎能找到相关的网页,但不能把上面的信息抽取出来。“暗藏网”不断增加,因此有必要开发一些工具把相关信息从网页上抽取并收集起来。 由于网上信息整合越来越重要,虽然网站信息抽取的研究比较新,但将不断发展。机器学习方法的使用仍将成为主流方法,因为处理动态的海量信息需要自动化程度高的技术。在文献 [52] 中提出,结合不同类型的方法,以开发出适应性强的系统,这应是一个有前途的方向。在文献 [36] 中,一种混合语言知识和句法特征的方法也被提出来。 本文介绍的系统多数是针对 HTML 文档的。以后几年 XML 的使用将被普及。 HTML 描述的是文档的表现方式,是文档的格式语言。 XML 则可以告诉你文档的意义,即定义内容而不只是形式。这虽然使分装器的生成工作变得简单,但不能排除其存在的必要性。 将来的挑战是建造灵活和可升级的分装器自动归纳系统,以适应不断增长的动态网络的需要。 |
参考文献 |
[1] S. Abiteboul. Querying Semistructured Data. Proceedings of the International Conference on Database Theory (ICDT), Greece , January 1997. [2] B. Adelberg. NoDoSE - A tool for Semi-Automatically Extracting Semistructured Data from Text Documents. Proceedings ACM SIGMOD International Conference on Management of Data, Seat- tle, June 1998. [3] D. E. Appelt, D. J. Israel. Introduction to Information Extraction Technology. Tutorial for IJCAI-99, Stockholm , August 1999. [4] N. Ashish, C. A. Knoblock. Semi-automatic Wrapper Generation for Internet Information Sources. Second IFCIS Conference on Cooperative Information Systems (CoopIS), South Car- olina, June 1997. [5] N. Ashish, C. A. Knoblock. Wrapper Generation for semistructured Internet Sources. SIGMOD Record, Vol. 26, No. 4, pp. 8--15, December 1997. [6] P. Atzeni, G. Mecca. Cut & Paste. Proceedings of the 16'th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS'97), Tucson , Arizona , May 1997. [7] M. Bauer, D. Dengler. TrIAs - An Architecture for Trainable Information Assistants. Workshop on AI and Information Integration, in conjunction with the 15'th National Conference on Artificial Intelligence (AAAI-98), Madison , Wisconsin , July 1998. [8] P. Berka. Intelligent Systems on the Internet. http://lisp.vse.cz/ berka/ai-inet.htm, Laboratory of Intelligent Systems, University of Economics, Prague . [9] L. Bright, J. R. Gruser, L. Raschid, M. E. Vidal. A Wrapper Generation Toolkit to Specify and Construct Wrappers for Web Accessible Data Sources (WebSources). Computer Systems Special Issue on Semantics on the WWW, Vol. 14 No. 2, March 1999. [10] S. Brin. Extracting Patterns and Relations from the World Wide Web. International Workshop on the Web and Databases (WebDB'98), Spain , March 1998. [11] M. E. Califf, R. J. Mooney. Relational Learning of Pattern-Match Rules for Information Extraction. Proceedings of the ACL Workshop on Natural Language Learning , Spain , July 1997. [12] M. E. Califf. Relational Learning Techniques for Natural Language Information Extraction. Ph.D. thesis, Department of Computer Sciences, University of Texas , Austin , August 1998. Technical Report AI98-276. [13] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, J. Widom. The TSIMMIS Project: Integration of Heterogeneous Information Sources. In Proceedings of IPSJ Conference, pp. 7--18, Tokyo , Japan, October 1994. [14] B. Chidlovskii, U. M. Borghoff, P-Y. Chevalier. Towards Sophisticated Wrapping of Web-based Information Repositories. Proceedings of the 5'th International RIAO Conference, Montreal , Quebec , June 1997. [15] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, S. Slattery. Learning to Extract Symbolic Knowledge from the World Wide Web. Proceedings of the 15'th National Conference on Artificial Intelligence (AAAI-98), Madison , Wisconsin , July 1998. [16] M. Craven, S. Slattery, K. Nigam. First-Order Learning for Web Mining. Proceedings of the 10'th European Conference on Machine Learning , Germany , April 1998. [17] R. B. Doorenbos, O. Etzioni, D. S. Weld. A Scalable Comparison-Shopping Agent for the World Wide Web. Technical report UW-CSE- 96-01-03 , University of Washington , 1996. [18] R. B. Doorenbos, O. Etzioni, D. S. Weld. A Scalable Comparison-Shopping Agent for the World-Wide-Web. Proceedings of the first International Conference on Autonomous Agents, California , February 1997. [19] O. Etzioni Moving up the Information Food Chain: Deploying Softbots on the World Wide Web. AI Magazine, 18(2):11-18, 1997. [20] D. Florescu, A. Levy, A. Mendelzon. Database Techniques for the World Wide Web: A Survey. ACM SIGMOD Record, Vol. 27, No. 3, September 1998. [21] D. Freitag. Information Extraction from HTML: Application of a General Machine Learning Ap- proach. Proceedings of the 15'th National Conference on Artificial Intelligence (AAAI-98), Madison , Wisconsin , July 1998. [22] D. Freitag. Machine Learning for Information Extraction in Informal Domains. Ph.D. dissertation, Carnegie Mellon University , November 1998. [23] D. Freitag. Multistrategy Learning for Information Extraction. Proceedings of the 15'th International Conference on Machine Learning (ICML-98), Madison , Wisconsin , July 1998. [24] R. Gaizauskas, Y. Wilks. Information Extraction: Beyond Document Retrieval. Computational Linguistics and Chinese Language Processing, vol. 3, no. 2, pp. 17--60, August 1998, [25] H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, J. Widom. Integrating and Accessing Heterogeneous Information Sources in TSIMMIS. In Proceedings of the AAAI Symposium on Information Gathering, pp. 61--64, Stan- ford, California , March 1995. [26] S. Grumbach and G. Mecca. In Search of the Lost Schema. Proceedings of the International Conference on Database Theory (ICDT'99), Jerusalem , January 1999. [27] J-R. Gruser, L. Raschid, M. E. Vidal, L. Bright. Wrapper Generation for Web Accessible Data Source. Proceedings of the 3'rd IFCIS International Conference on Cooperative Information Systems (CoopIS-98), New York , August 1998. [28] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, A. Crespo. Extracting Semistructured Information from Web. Proceedings of the Workshop on Management of Semistructured Data, Tucson , Ari- zona, May 1997. [29] J. Hammer, H. Garcia-Molina, S. Nestorov, R. Yerneni, M. Breunig, V. Vassalos. Template-Based Wrappers in the TSIMMIS System. Proceedings of the 26'th SIGMOD International Conference on Management of Data, Tucson , Arizona , May 1997. [30] C-H. Hsu. Initial Results on Wrapping Semistructured Web Pages with Finite-State Transducers and Contextual Rules. Workshop on AI and Information Integration, in conjunction with the 15'th National Conference on Artificial Intelligence (AAAI-98), Madison , Wisconsin , July 1998. [31] C-H. Hsu and M-T Dung. Generating Finite-Sate Transducers for semistructured Data Extraction From the Web. Information systems, Vol 23. No. 8, pp. 521--538, 1998. [32] C. A. Knoblock, S. Minton, J. L. Ambite, N. Ashish, P. J. Modi, I. Muslea, A. G. Philpot, S. Tejada. Modeling Web Sources for Information Integration. Proceedings of the 15'th National Conference on Artificial Intelligence (AAAI-98), Madison , Wisconsin , July 1998. [33] N. Kushmerick, D. S. Weld, R. Doorenbos. Wrapper Induction for Information Extraction. 15'th International Joint Conference on Artificial Intelligence (IJCAI-97), Nagoya , August 1997. [34] N. Kushmerick. Wrapper Induction for Information Extraction. Ph.D. Dissertation, University of Washington . Technical Report UW-CSE- 97-11-04 , 1997. [35] N. Kushmerick. Wrapper induction: Efficiency and expressiveness. Workshop on AI and Information Integration, in conjunction with the 15'th National Conference on Artificial Intelligence (AAAI-98), Madison , Wisconsin , July 1998. [36] Kushmerick, N. Gleaning the Web. IEEE Intelligent Systems, 14(2), March/April 1999. [37] S. Lawrence, C.l. Giles. Searching the World Wide Web. Science magazine, v. 280, pp. 98--100, April 1998. [38] A. Y. Levy, A. Rajaraman, J. J. Ordille. Querying Hetereogeneous Information Sources Using Source Descriptions. Proceedings 22'nd VLDB Conference, Bombay , September 1996. [39] S. Muggleton, C. Feng. Efficient Induction of Logic Programs. Proceedings of the First Conference on Algorithmic Learning Theory, New York , 1990. [40] I. Muslea. Extraction Patterns: From Information Extraction to Wrapper Induction. Information Sciences Institute, University of Southern California , 1998. [41] I. Muslea. Extraction Patterns for Information Extraction Tasks: A Survey. Workshop on Machine Learning for Information Extraction, Orlando , July 1999. [42] I. Muslea, S. Minton, C. Knoblock. STALKER: Learning Extraction Rules for Semistructured, Web-based Information Sources. Workshop on AI and Information Integration, in conjunction with the 15'th National Conference on Artificial Intelligence (AAAI-98), Madison , Wisconsin , July 1998. [43] I. Muslea, S. Minton, C. Knoblock. Wrapper Induction for Semistructured Web-based Information Sources. Proceedings of the Conference on Automatic Learning and Discovery CONALD-98, Pittsburgh , June 1998. [44] I. Muslea, S. Minton, C. Knoblock. A Hierarchical Approach to Wrapper Induction. Third International Conference on Autonomous Agents, (Agents'99), Seattle, May 1999. [45] S. Nestorov, S. Aboteboul, R. Motwani. Inferring Structure in Semistructured Data. Proceedings of the 13'th International Conference on Data Engineering (ICDE'97), Birmingham , England , April 1997. [46] STS Prasad, A. Rajaraman. Virtual Database Technology, XML, and the Evolution of the Web. Data Engineering, Vol. 21, No. 2, June 1998. [47] J.R. Quinlan, R. M. Cameron-Jones. FOIL: A Midterm Report. European Conference on Machine Learning, Vienna , Austria , 1993. [48] A. Rajaraman. Transforming the Internet into a Database. Workshop on Reuse of Web information, in conjunction with WWW7, Brisbane, April 1998. [49] A. Sahuguet, F. Azavant. WysiWyg Web Wrapper Factory (W 4f ). http://cheops.cis.upenn.edu/ sahuguet/WAPI/wapi.ps.gz, University of Pennsylva- nia, August 1998. [50] D. Smith, M. Lopez. Information Extraction for Semistructured Documents. Proceedings of the Workshop on Management of Semistructured Data, in conjunction with PODS/SIGMOD, Tucson , Arizona , May 1997. [51] S. Soderland. Learning to Extract Text-based Information from the World Wide Web. Proceedings of the 3'rd International Conference on Knowledge Discovery and Data Mining (KDD), California , August 1997. [52] S. Soderland. Learning Information Extraction Rules for Semistructured and Free Text. Machine Learning, 1999. [53] K. Zechner. A Literature Survey on Information Extraction and Text Summarization. Term paper, Carnegie Mellon University , 1997. [54] About mySimon. http://www.mysimon.com/about mysimon/company/backgrounder.anml |
凡是有该标志的文章,都是该blog博主Caoer(草儿)原创,凡是索引、收藏
、转载请注明来处和原文作者。非常感谢。