整数划分算法原理与实现
本文为原创,如需转载,请注明作者和出处,谢谢!
整数划分问题是将一个正整数n拆成一组数连加并等于n的形式,且这组数中的最大加数不大于n。
如6的整数划分为
6
5 + 1
4 + 2, 4 + 1 + 1
3 + 3, 3 + 2 + 1, 3 + 1 + 1 + 1
2 + 2 + 2, 2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1
共11种。下面介绍一种通过递归方法得到一个正整数的划分数。
递归函数的声明为 int split(int n, int m);其中n为要划分的正整数,m是划分中的最大加数(当m > n时,最大加数为n),
1 当n = 1或m = 1时,split的值为1,可根据上例看出,只有一个划分1 或 1 + 1 + 1 + 1 + 1 + 1
可用程序表示为if(n == 1 || m == 1) return 1;
2 下面看一看m 和 n的关系。它们有三种关系
(1) m > n
在整数划分中实际上最大加数不能大于n,因此在这种情况可以等价为split(n, n);
可用程序表示为if(m > n) return split(n, n);
(2) m = n
这种情况可用递归表示为split(n, m - 1) + 1,从以上例子中可以看出,就是最大加
数为6和小于6的划分之和
用程序表示为if(m == n) return (split(n, m - 1) + 1);
(3) m < n
这是最一般的情况,在划分的大多数时都是这种情况。
从上例可以看出,设m = 4,那split(6, 4)的值是最大加数小于4划分数和整数2的划分数的和。
因此,split(n, m)可表示为split(n, m - 1) + split(n - m, m)
根据以上描述,可得源程序如下:
将正整数划分成连续的正整数之和
如15可以划分成4种连续整数相加的形式:
15
7 8
4 5 6
1 2 3 4 5
首先考虑一般的形式,设n为被划分的正整数,x为划分后最小的整数,如果n有一种划分,那么
结果就是x,如果有两种划分,就是x和x x + 1, 如果有m种划分,就是 x 、x x + 1 、 x x + 1 x + 2 、... 、x x + 1 x + 2 ... x + m - 1
将每一个结果相加得到一个公式(i * x + i * (i - 1) / 2) = n,i为当前划分后相加的正整数个数。
满足条件的划分就是使x为正整数的所有情况。
如上例,当i = 1时,即划分成一个正整数时,x = 15, 当i = 2时, x = 7。
当x = 3时,x = 4, 当x = 4时,4/9,不是正整数,因此,15不可能划分成4个正整数相加。
当x = 5时,x = 1。
这里还有一个问题,这个i的最大值是多少?不过有一点可以肯定,它一定比n小。我们可以做一个假设,
假设n可以拆成最小值为1的划分,如上例中的1 2 3 4 5。这是n的最大数目的划分。如果不满足这个假设,
那么 i 一定比这个划分中的正整数个数小。因此可以得到这样一个公式i * (i + 1) / 2 <= n,即当i满足
这个公式时n才可能被划分。
综合上述,源程序如下
新浪微博:http://t.sina.com.cn/androidguy 昵称:李宁_Lining
整数划分问题是将一个正整数n拆成一组数连加并等于n的形式,且这组数中的最大加数不大于n。
如6的整数划分为
6
5 + 1
4 + 2, 4 + 1 + 1
3 + 3, 3 + 2 + 1, 3 + 1 + 1 + 1
2 + 2 + 2, 2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1
共11种。下面介绍一种通过递归方法得到一个正整数的划分数。
递归函数的声明为 int split(int n, int m);其中n为要划分的正整数,m是划分中的最大加数(当m > n时,最大加数为n),
1 当n = 1或m = 1时,split的值为1,可根据上例看出,只有一个划分1 或 1 + 1 + 1 + 1 + 1 + 1
可用程序表示为if(n == 1 || m == 1) return 1;
2 下面看一看m 和 n的关系。它们有三种关系
(1) m > n
在整数划分中实际上最大加数不能大于n,因此在这种情况可以等价为split(n, n);
可用程序表示为if(m > n) return split(n, n);
(2) m = n
这种情况可用递归表示为split(n, m - 1) + 1,从以上例子中可以看出,就是最大加
数为6和小于6的划分之和
用程序表示为if(m == n) return (split(n, m - 1) + 1);
(3) m < n
这是最一般的情况,在划分的大多数时都是这种情况。
从上例可以看出,设m = 4,那split(6, 4)的值是最大加数小于4划分数和整数2的划分数的和。
因此,split(n, m)可表示为split(n, m - 1) + split(n - m, m)
根据以上描述,可得源程序如下:
#include
<
stdio.h
>
int split( int n, int m)
{
if (n < 1 || m < 1 ) return 0 ;
if (n == 1 || m == 1 ) return 1 ;
if (n < m) return split(n, n);
if (n == m) return (split(n, m - 1 ) + 1 );
if (n > m) return (split(n, m - 1 ) + split((n - m), m));
}
int main()
{
printf( " 12的划分数: %d " , split( 12 , 12 ));
return 0 ;
}
int split( int n, int m)
{
if (n < 1 || m < 1 ) return 0 ;
if (n == 1 || m == 1 ) return 1 ;
if (n < m) return split(n, n);
if (n == m) return (split(n, m - 1 ) + 1 );
if (n > m) return (split(n, m - 1 ) + split((n - m), m));
}
int main()
{
printf( " 12的划分数: %d " , split( 12 , 12 ));
return 0 ;
}
将正整数划分成连续的正整数之和
如15可以划分成4种连续整数相加的形式:
15
7 8
4 5 6
1 2 3 4 5
首先考虑一般的形式,设n为被划分的正整数,x为划分后最小的整数,如果n有一种划分,那么
结果就是x,如果有两种划分,就是x和x x + 1, 如果有m种划分,就是 x 、x x + 1 、 x x + 1 x + 2 、... 、x x + 1 x + 2 ... x + m - 1
将每一个结果相加得到一个公式(i * x + i * (i - 1) / 2) = n,i为当前划分后相加的正整数个数。
满足条件的划分就是使x为正整数的所有情况。
如上例,当i = 1时,即划分成一个正整数时,x = 15, 当i = 2时, x = 7。
当x = 3时,x = 4, 当x = 4时,4/9,不是正整数,因此,15不可能划分成4个正整数相加。
当x = 5时,x = 1。
这里还有一个问题,这个i的最大值是多少?不过有一点可以肯定,它一定比n小。我们可以做一个假设,
假设n可以拆成最小值为1的划分,如上例中的1 2 3 4 5。这是n的最大数目的划分。如果不满足这个假设,
那么 i 一定比这个划分中的正整数个数小。因此可以得到这样一个公式i * (i + 1) / 2 <= n,即当i满足
这个公式时n才可能被划分。
综合上述,源程序如下
int
split1(
int
n)
{
int i, j, m = 0 , x, t1, t2;
// 在这里i + 1之所以变为i - 1,是因为i * (i - 1) / 2这个式子在下面多次用到,
// 为了避免重复计算,因此将这个值计算完后保存在t1中。并且将<= 号变为了<号。
for (i = 1 ; (t1 = i * (i - 1 ) / 2 ) < n; i ++ )
{
t2 = (n - t1);
x = t2 / i;
if (x <= 0 ) break ;
if ((n - t1) % i == 0 )
{
printf( " %d " , x);
for (j = 1 ; j < i; j ++ )
printf( " %d " , x + j);
printf( " \n " );
m ++ ;
}
}
return m;
}
{
int i, j, m = 0 , x, t1, t2;
// 在这里i + 1之所以变为i - 1,是因为i * (i - 1) / 2这个式子在下面多次用到,
// 为了避免重复计算,因此将这个值计算完后保存在t1中。并且将<= 号变为了<号。
for (i = 1 ; (t1 = i * (i - 1 ) / 2 ) < n; i ++ )
{
t2 = (n - t1);
x = t2 / i;
if (x <= 0 ) break ;
if ((n - t1) % i == 0 )
{
printf( " %d " , x);
for (j = 1 ; j < i; j ++ )
printf( " %d " , x + j);
printf( " \n " );
m ++ ;
}
}
return m;
}
《Android开发完全讲义(第2版)》(本书版权已输出到台湾)
http://product.dangdang.com/product.aspx?product_id=22741502
《Android高薪之路:Android程序员面试宝典 》http://book.360buy.com/10970314.html
新浪微博:http://t.sina.com.cn/androidguy 昵称:李宁_Lining