Interleaving String -- LeetCode

原题链接:  http://oj.leetcode.com/problems/interleaving-string/  
这是一道关于字符串操作的题目,要求是判断一个字符串能不能由两个字符串按照他们自己的顺序,每次挑取两个串中的一个字符来构造出来。
像这种判断能否按照某种规则来完成求是否或者某个量的题目,很容易会想到用动态规划来实现。
先说说维护量,res[i][j]表示用s1的前i个字符和s2的前j个字符能不能按照规则表示出s3的前i+j个字符,如此最后结果就是res[s1.length()][s2.length()],判断是否为真即可。接下来就是递推式了,假设知道res[i][j]之前的所有历史信息,我们怎么得到res[i][j]。可以看出,其实只有两种方式来递推,一种是选取s1的字符作为s3新加进来的字符,另一种是选s2的字符作为新进字符。而要看看能不能选取,就是判断s1(s2)的第i(j)个字符是否与s3的i+j个字符相等。如果可以选取并且对应的res[i-1][j](res[i][j-1])也为真,就说明s3的i+j个字符可以被表示。这两种情况只要有一种成立,就说明res[i][j]为真,是一个或的关系。所以递推式可以表示成
res[i][j] = res[i-1][j]&&s1.charAt(i-1)==s3.charAt(i+j-1) || res[i][j-1]&&s2.charAt(j-1)==s3.charAt(i+j-1)
时间上因为是一个二维动态规划,所以复杂度是O(m*n),m和n分别是s1和s2的长度。最后就是空间花费,可以看出递推式中只需要用到上一行的信息,所以我们只需要一个一维数组就可以完成历史信息的维护,为了更加优化,我们把短的字符串放在内层循环,这样就可以只需要短字符串的长度即可,所以复杂度是O(min(m,n))。代码如下:
public boolean isInterleave(String s1, String s2, String s3) {
    if(s1.length()+s2.length()!=s3.length())
        return false;
    String minWord = s1.length()>s2.length()?s2:s1;
    String maxWord = s1.length()>s2.length()?s1:s2;
    boolean[] res = new boolean[minWord.length()+1];
    res[0] = true;
    for(int i=0;i<minWord.length();i++)
    {
        res[i+1] = res[i] && minWord.charAt(i)==s3.charAt(i);
    }
    for(int i=0;i<maxWord.length();i++)
    {
        res[0] = res[0] && maxWord.charAt(i)==s3.charAt(i);
        for(int j=0;j<minWord.length();j++)
        {
            res[j+1] = res[j+1]&&maxWord.charAt(i)==s3.charAt(i+j+1) || res[j]&&minWord.charAt(j)==s3.charAt(i+j+1);
        }
    }
    return res[minWord.length()];
}
动态规划其实还是有套路的,无非就是找到维护量,然后得到递推式,接下来看看历史信息对于空间的需求,尽量优化,会在后面对于动态规划做一个比较通用的总结哈。

你可能感兴趣的:(java,LeetCode,算法,面试,动态规划)