针对目前火爆的2048游戏,有人实现了一个AI程序,可以以较大概率(高于90%)赢得游戏,并且作者在stackoverflow上简要介绍了AI的算法框架和实现思路。但是这个回答主要集中在启发函数的选取上,对AI用到的核心算法并没有仔细说明。这篇文章将主要分为两个部分,第一部分介绍其中用到的基础算法,即Minimax和Alpha-beta剪枝;第二部分分析作者具体的实现。
2048本质上可以抽象成信息对称双人对弈模型(玩家向四个方向中的一个移动,然后计算机在某个空格中填入2或4)。这里“信息对称”是指在任一时 刻对弈双方对格局的信息完全一致,移动策略仅依赖对接下来格局的推理。作者使用的核心算法为对弈模型中常用的带Alpha-beta剪枝的 Minimax。这个算法也常被用于如国际象棋等信息对称对弈AI中。
下面先介绍不带剪枝的Minimax。首先本文将通过一个简单的例子说明Minimax算法的思路和决策方式。
现在考虑这样一个游戏:有三个盘子A、B和C,每个盘子分别放有三张纸币。A放的是1、20、50;B放的是5、10、100;C放的是1、5、20。单位均为“元”。有甲、乙两人,两人均对三个盘子和上面放置的纸币有可以任意查看。游戏分三步:
其中甲的目标是最后拿到的纸币面值尽量大,乙的目标是让甲最后拿到的纸币面值尽量小。
下面用Minimax算法解决这个问题。
一般解决博弈类问题的自然想法是将格局组织成一棵树,树的每一个节点表示一种格局,而父子关系表示由父格局经过一步可以到达子格局。Minimax 也不例外,它通过对以当前格局为根的格局树搜索来确定下一步的选择。而一切格局树搜索算法的核心都是对每个格局价值的评价。Minimax算法基于以下朴 素思想确定格局价值:
上面的表述有些抽象,下面看具体示例。
下图是上述示例问题的格局树:
注意,由于示例问题格局数非常少,我们可以给出完整的格局树。这种情况下我可以找到Minimax算法的全局最优解。而真实情况中,格局树非常庞大,即使是计算机也不可能给出完整的树,因此我们往往只搜索一定深度,这时只能找到局部最优解。
我们从甲的角度考虑。其中正方形节点表示轮到我方(甲),而三角形表示轮到对方(乙)。经过三轮对弈后(我方-对方-我方),将进入终局。黄色叶结 点表示所有可能的结局。从甲方看,由于最终的收益可以通过纸币的面值评价,我们自然可以用结局中甲方拿到的纸币面值表示终格局的价值。
下面考虑倒数第二层节点,在这些节点上,轮到我方选择,所以我们应该引入可选择的最大价值格局,因此每个节点的价值为其子节点的最大值:
这些轮到我方的节点叫做max节点,max节点的值是其子节点最大值。
倒数第三层轮到对方选择,假设对方会尽力将局势引入让我方价值最小的格局,因此这些节点的价值取决于子节点的最小值。这些轮到对方的节点叫做min节点。
最后,根节点是max节点,因此价值取决于叶子节点的最大值。最终完整赋值的格局树如下:
总结一下Minimax算法的步骤:
在上面的例子中,根节点的价值为20,表示如果对方每一步都完美决策,则我方按照上述算法可最终拿到20元,这是我方在Minimax算法下最好的决策。格局转换路径如下图红色路径所示:
对于真实问题中的Minimax,再次强调几点:
简单的Minimax算法有一个很大的问题就是计算复杂性。由于所需搜索的节点数随最大深度呈指数膨胀,而算法的效果往往和深度相关,因此这极大限制了算法的效果。
Alpha-beta剪枝是对Minimax的补充和改进。采用Alpha-beta剪枝后,我们可不必构造和搜索最大深度D内的所有节点,在构造过程中,如果发现当前格局再往下不能找到更好的解,我们就停止在这个格局及以下的搜索,也就是剪枝。
Alpha-beta基于这样一种朴素的思想:时时刻刻记得当前已经知道的最好选择,如果从当前格局搜索下去,不可能找到比已知最优解更好的解,则停止这个格局分支的搜索(剪枝),回溯到父节点继续搜索。
Alpha-beta算法可以看成变种的Minimax,基本方法是从根节点开始采用深度优先的方式构造格局树,在构造每个节点时,都会读取此节点 的alpha和beta两个值,其中alpha表示搜索到当前节点时已知的最好选择的下界,而beta表示从这个节点往下搜索最坏结局的上界。由于我们假 设对手会将局势引入最坏结局之一,因此当beta小于alpha时,表示从此处开始不论最终结局是哪一个,其上限价值也要低于已知的最优解,也就是说已经 不可能此处向下找到更好的解,所以就会剪枝。
下面同样以上述示例介绍Alpha-beta剪枝算法的工作原理。我们从根节点开始,详述使用Alpha-beta的每一个步骤:
此时搜索全部完毕,而我们也得到了这一步的策略:应该走A分支。
可以看到相比普通Minimax要搜索18个叶子节点相比,这里只搜索了9个。采用Alpha-beta剪枝,可以在相同时间内加大Minimax的搜索深度,因此可以获得更好的效果。并且Alpha-beta的解和普通Minimax的解是一致的。
下面看一下ov3y同学针对2048实现的AI。程序的github在这里,主要程序都在ai.js中。
上面说过Minimax和Alpha-beta都是针对信息对称的轮流对弈问题,这里作者是这样抽象游戏的:
如此2048游戏就被建模成一个信息对称的双人对弈问题。
作为算法的核心,如何评价当前格局的价值是重中之重。在2048中,除了终局外,中间格局并无非常明显的价值评价指标,因此需要用一些启发式的指标来评价格局。那些分数高的“好”格局是容易引向胜利的格局,而分低的“坏”格局是容易引向失败的格局。
作者采用了如下几个启发式指标。
单调性指方块从左到右、从上到下均遵从递增或递减。一般来说,越单调的格局越好。下面是一个具有良好单调格局的例子:
平滑性是指每个方块与其直接相邻方块数值的差,其中差越小越平滑。例如2旁边是4就比2旁边是128平滑。一般认为越平滑的格局越好。下面是一个具有极端平滑性的例子:
这个很好理解,因为一般来说,空格子越少对玩家越不利。所以我们认为空格越多的格局越好。
这个指标评价空格被分开的程度,空格越分散则格局越差。
具体来说,2048-AI在评价格局时,对这些启发指标采用了加权策略。具体代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
// static evaluation function
AI.prototype.eval = function() {
var emptyCells = this.grid.availableCells().length;
var smoothWeight = 0.1,
//monoWeight = 0.0,
//islandWeight = 0.0,
mono2Weight = 1.0,
emptyWeight = 2.7,
maxWeight = 1.0;
return this.grid.smoothness() * smoothWeight
//+ this.grid.monotonicity() * monoWeight
//- this.grid.islands() * islandWeight
+ this.grid.monotonicity2() * mono2Weight
+ Math.log(emptyCells) * emptyWeight
+ this.grid.maxValue() * maxWeight;
};
|
有兴趣的同学可以调整一下权重看看有什么效果。
在这个程序中,除了采用Alpha-beta剪枝外,在min节点还采用了另一种剪枝,即只考虑对方走出让格局最差的那一步(而实际2048中计算 机的选择是随机的),而不是搜索全部对方可能的走法。这是因为对方所有可能的选择为“空格数×2”,如果全部搜索的话会严重限制搜索深度。
相关剪枝代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
// try a 2 and 4 in each cell and measure how annoying it is
// with metrics from eval
var candidates = [];
var cells = this.grid.availableCells();
var scores = { 2: [], 4: [] };
for (var value in scores) {
for (var i in cells) {
scores[value].push(null);
var cell = cells[i];
var tile = new Tile(cell, parseInt(value, 10));
this.grid.insertTile(tile);
scores[value][i] = -this.grid.smoothness() + this.grid.islands();
this.grid.removeTile(cell);
}
}
// now just pick out the most annoying moves
var maxScore = Math.max(Math.max.apply(null, scores[2]), Math.max.apply(null, scores[4]));
for (var value in scores) { // 2 and 4
for (var i=0; i<scores[value].length; i++) {
if (scores[value][i] == maxScore) {
candidates.push( { position: cells[i], value: parseInt(value, 10) } );
}
}
}
|
在2048-AI的实现中,并没有限制搜索的最大深度,而是限制每次“思考”的时间。这里设定了一个超时时间,默认为100ms,在这个时间内,会从1开始,搜索到所能达到的深度。相关代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
// performs iterative deepening over the alpha-beta search
AI.prototype.iterativeDeep = function() {
var start = (new Date()).getTime();
var depth = 0;
var best;
do {
var newBest = this.search(depth, -10000, 10000, 0 ,0);
if (newBest.move == -1) {
//console.log('BREAKING EARLY');
break;
} else {
best = newBest;
}
depth++;
} while ( (new Date()).getTime() - start < minSearchTime);
//console.log('depth', --depth);
//console.log(this.translate(best.move));
//console.log(best);
return best
}
|
因此这个算法实现的效果实际上依赖于执行javascript引擎机器的性能。当然可以通过增加超时时间来达到更好的效果,但此时每一步行走速度会相应变慢。
目前这个实现作者声称成功合成2048的概率超过90%,但是合成4096甚至8192的概率并不高。作者在github项目的REAMDE中同时给出了一些优化建议,这些建议包括: