左值右值是表达式的属性,该属性称为 value category。按该属性分类,每一个表达式属于下列之一:
lvalue |
left value,传统意义上的左值 |
xvalue |
expiring value, x值,指通过“右值引用”产生的对象 |
prvalue |
pure rvalue,纯右值,传统意义上的右值(?) |
而 xvalue 和其他两个类型分别复合,构成:
lvalue + xvalue = glvalue |
general lvalue,泛左值 |
xvalue + prvalue = rvalue |
右值 |
++x 与 x++ 假定x的定义为 int x=0;,那么前者是 lvalue,后者是rvalue。前者修改自身值,并返回自身;后者先创建一个临时对像,为其赋值,而后修改x的值,最后返回临时对像。
区分表达式的左右值属性有一个简便方法:若可对表达式用 & 符取址,则为左值,否则为右值。比如
&obj , &*ptr , &ptr[index] , &++x |
有效 |
&1729 , &(x + y) , &std::string("meow"), &x++ |
无效 |
对于函数调用,根绝返回值类型不同,可以是lvalue、xvalue、prvalue:
The result of calling a function whose return type is an lvalue reference is an lvalue
The result of calling a function whose return type is an rvalue reference is an xvalue.
The result of calling a function whose return type is not a reference is a prvalue.
左值和右值表达式都可以是const或non-const。
比如,变量和函数的定义为:
string one("lvalue"); const string two("clvalue"); string three() { return "rvalue"; } const string four() { return "crvalue"; }
那么表达式:
表达式 |
分类 |
one |
modifiable lvalue |
two |
const lvalue |
three() |
modifiable rvalue |
four() |
const rvalue |
引用
Type& |
只能绑定到可修改的左值表达式 |
const Type& |
可以绑定到任何表达式 |
Type&& |
可绑定到可修改的左值或右值表达式 |
const Type&& |
可以绑定到任何表达式 |
#include <iostream> #include <string> using namespace std; string one("lvalue"); const string two("clvalue"); string three() { return "rvalue"; } const string four() { return "crvalue"; } void func(string& s) { cout << "func(string& s): " << s << endl; } void func(const string& s) { cout << "func(const string& s): " << s << endl; } void func(string&& s) { cout << "func(string&& s): " << s << endl; } void func(const string&& s) { cout << "func(const string&& s): " << s << endl; } int main() { func(one); func(two); func(three()); func(four()); return 0; }
结果:
func(string& s): lvalue func(const string& s): clvalue func(string&& s): rvalue func(const string&& s): crvalue
如果只保留const string& 和 string&& 两个重载函数,结果为:
func(const string& s): lvalue func(const string& s): clvalue func(string&& s): rvalue func(const string& s): crvalue
C++0x第5章的第6段:
Named rvalue references are treated as lvalues and unnamed rvalue references to objects are treated as xvalues; rvalue references to functions are treated as lvalues whether named or not.
#include <iostream> #include <string> void F1(int&& a) { std::cout<<"F1(int&&) "<<a<<std::endl; } void F1(const int& a) { std::cout<<"F1(const int&) "<<a<<std::endl; } void F2(int&& a) { F1(a); } int main() { int && a=1; F2(a); F1(a); F2(2); F1(2); return 0; }
结果
F1(const int&) 1 F1(const int&) 1 F1(const int&) 2 F1(int&&) 2
在这之前,如果写一个交换两个值的swap函数:
template <class T> swap(T& a, T& b) { T tmp(a); // now we have two copies of a a = b; // now we have two copies of b b = tmp; // now we have two copies of tmp (aka a) }
之后
template <class T> swap(T& a, T& b) { T tmp(std::move(a)); a = std::move(b); b = std::move(tmp); }
std::move 接受左值或右值参数,并返回一个右值(其所作工作很简单)
template <class T> typename remove_reference<T>::type&& move(T&& a) { return a; }
要是的swap真正发挥作用,需要重载:
class T { public: T(T&& ); T& operator = (T&& ); ...
为了对比左值引用和右值引用,一开始误打误撞,写了这样一个函数
template <typename Type> void Swap(Type&& sb1, Type&& sb2) { Type sb(sb1); sb1 = sb2; sb2 = sb; }
然后
int main() { int a=1, b=2; Swap(a, b); std::cout<<a<<" "<<b<<std::endl; return 0; }
结果却是
2 2
不用整数,换用一个自定义的类型试试看:
class A { public: A() { std::cout << "Default constructor." << std::endl; m_p = NULL; } ~A() { std::cout << "Destructor." << std::endl; delete m_p; } explicit A(const int n) { std::cout << "Unary constructor." << std::endl; m_p = new int(n); } A(const A& other) { std::cout << "Copy constructor." << std::endl; if (other.m_p) { m_p = new int(*other.m_p); } else { m_p = NULL; } } A(A&& other) { std::cout << "Move constructor." << std::endl; m_p = other.m_p; other.m_p = NULL; } A& operator=(const A& other) { std::cout << "Copy assignment operator." << std::endl; if (this != &other) { delete m_p; if (other.m_p) { m_p = new int(*other.m_p); } else { m_p = NULL; } } return *this; } A& operator=(A&& other) { std::cout << "Move assignment operator." << std::endl; if (this != &other) { delete m_p; m_p = other.m_p; other.m_p = NULL; } return *this; } int get() const { return m_p ? *m_p : 0; } private: int * m_p; }; int main() { A a(1); A b(2); Swap2(a, b); std::cout<<a.get()<<" "<<b.get()<<std::endl; return 0; }
结果
Unary constructor. Unary constructor. Copy assignment operator. Copy assignment operator. 2 2 Destructor. Destructor.
只出现了两个对象,那么Swap中的临时对象去哪儿了?
If P is a cv-qualified type, the top level cv-qualifiers of P’s type are ignored for type deduction. If P is a reference type, the type referred to by P is used for type deduction. If P is an rvalue reference to a cv unqualified template parameter and the argument is an lvalue, the type “lvalue reference to A” is used in place of A for type deduction. template <class T> int f(T&&); template <class T> int g(const T&&); int i; int n1 = f(i); // calls f<int&>(int&) int n2 = f(0); // calls f<int>(int&&) int n3 = g(i); // error: would call g<int>(const int&&), which // would bind an rvalue reference to an lvalue
也就是前面提到的
template <typename Type> void Swap(Type&& sb1, Type&& sb2)
参数推导后
void Swap<int&>(int& sb1, int& sb1)
http://blog.csdn.net/zwvista/article/details/5459774
http://blog.csdn.net/hikaliv/article/details/4541429
http://topic.csdn.net/u/20090706/16/514af7e1-ad20-4ea3-bdf0-bfe6d34d9814.html
http://www.artima.com/cppsource/rvalue.html