SIFT源码分析系列文章的索引在这里:RobHess的SIFT源码分析:综述
imgfeatures.h中有SIFT特征点结构struct feature的定义,除此之外还有一些特征点的导入导出以及特征点绘制函数的声明。
对应的imgfeatures.c文件中是特征点的导入导出以及特征点绘制函数的实现。
特征点的类型有两种,一种是是牛津大学VGG提供的源码中的特征点格式,另一种是David.Lowe提供的源码中的特征点格式。
struct feature结构可以兼容这两种特征点格式,但一般用的多的还是Lowe格式的特征点,源码中默认的特征点格式也是Lowe格式的。
特征点结构体struct feature的定义如下:
/*特征点结构体 此结构体可存储2中类型的特征点: FEATURE_OXFD表示是牛津大学VGG提供的源码中的特征点格式, FEATURE_LOWE表示是David.Lowe提供的源码中的特征点格式。 如果是OXFD类型的特征点,结构体中的a,b,c成员描述了特征点周围的仿射区域(椭圆的参数),即邻域。 如果是LOWE类型的特征点,结构体中的scl和ori成员描述了特征点的大小和方向。 fwd_match,bck_match,mdl_match一般同时只有一个起作用,用来指明此特征点对应的匹配点 */ struct feature { double x; /**< x coord */ //特征点的x坐标 double y; /**< y coord */ //特征点的y坐标 double a; /**< Oxford-type affine region parameter */ //OXFD特征点中椭圆的参数 double b; /**< Oxford-type affine region parameter */ //OXFD特征点中椭圆的参数 double c; /**< Oxford-type affine region parameter */ //OXFD特征点中椭圆的参数 double scl; /**< scale of a Lowe-style feature *///LOWE特征点的尺度 double ori; /**< orientation of a Lowe-style feature */ //LOWE特征点的方向 int d; /**< descriptor length */ //特征描述子的长度,即维数,一般是128 double descr[FEATURE_MAX_D]; /**< descriptor */ //128维的特征描述子,即一个double数组 int type; /**< feature type, OXFD or LOWE */ //特征点类型 int category; /**< all-purpose feature category */ struct feature* fwd_match; /**< matching feature from forward image */ //指明此特征点对应的匹配点 struct feature* bck_match; /**< matching feature from backmward image */ //指明此特征点对应的匹配点 struct feature* mdl_match; /**< matching feature from model */ //指明此特征点对应的匹配点 CvPoint2D64f img_pt; /**< location in image */ //特征点的坐标,等于(x,y) CvPoint2D64f mdl_pt; /**< location in model */ //当匹配类型是mdl_match时用到 void* feature_data; /**< user-definable data */ //用户定义的数据: //在SIFT极值点检测中,是detection_data结构的指针 //在k-d树搜索中,是bbf_data结构的指针 //在RANSAC算法中,是ransac_data结构的指针 };
第一行的两个数分别是特征点的总个数(上图只截取了2个特征描述子)和特征描述子的维数(默认是128)
然后是每个特征点的数据,每个特征点的第一行的四个数分别是:特征点的y坐标,x坐标,特征点的尺度,特征点的方向
然后是128个整数,即128维的特征描述子,共7行,前6行每行20个,最后一行8个。
默认情况下,检测出的特征点是按照尺度的降序排列的。
下面是imgfeatures.h和imgfeatures.c文件的注释:
imgfeatures.h
/**@file Functions and structures for dealing with image features Copyright (C) 2006-2010 Rob Hess <hess@eecs.oregonstate.edu> @version 1.1.2-20100521 */ /* 此文件中定义了存储特征点的结构体feature,以及几个函数原型的声明: 1、特征点的导入导出 2、特征点绘制 */ #ifndef IMGFEATURES_H #define IMGFEATURES_H #include "cxcore.h" /*特征点的类型: FEATURE_OXFD表示是牛津大学VGG提供的源码中的特征点格式, FEATURE_LOWE表示是David.Lowe提供的源码中的特征点格式 */ /** FEATURE_OXFD <BR> FEATURE_LOWE */ enum feature_type { FEATURE_OXFD, FEATURE_LOWE, }; /*特征点匹配类型: FEATURE_FWD_MATCH:表明feature结构中的fwd_match域是对应的匹配点 FEATURE_BCK_MATCH:表明feature结构中的bck_match域是对应的匹配点 FEATURE_MDL_MATCH:表明feature结构中的mdl_match域是对应的匹配点 */ /** FEATURE_FWD_MATCH <BR> FEATURE_BCK_MATCH <BR> FEATURE_MDL_MATCH */ enum feature_match_type { FEATURE_FWD_MATCH, FEATURE_BCK_MATCH, FEATURE_MDL_MATCH, }; /*画出的特征点的颜色*/ /* colors in which to display different feature types */ #define FEATURE_OXFD_COLOR CV_RGB(255,255,0) #define FEATURE_LOWE_COLOR CV_RGB(255,0,255) /*最大特征描述子长度,定为128*/ /** max feature descriptor length */ #define FEATURE_MAX_D 128 /*特征点结构体 此结构体可存储2中类型的特征点: FEATURE_OXFD表示是牛津大学VGG提供的源码中的特征点格式, FEATURE_LOWE表示是David.Lowe提供的源码中的特征点格式。 如果是OXFD类型的特征点,结构体中的a,b,c成员描述了特征点周围的仿射区域(椭圆的参数),即邻域。 如果是LOWE类型的特征点,结构体中的scl和ori成员描述了特征点的大小和方向。 fwd_match,bck_match,mdl_match一般同时只有一个起作用,用来指明此特征点对应的匹配点 */ /** Structure to represent an affine invariant image feature. The fields x, y, a, b, c represent the affine region around the feature: a(x-u)(x-u) + 2b(x-u)(y-v) + c(y-v)(y-v) = 1 */ struct feature { double x; /**< x coord */ //特征点的x坐标 double y; /**< y coord */ //特征点的y坐标 double a; /**< Oxford-type affine region parameter */ //OXFD特征点中椭圆的参数 double b; /**< Oxford-type affine region parameter */ //OXFD特征点中椭圆的参数 double c; /**< Oxford-type affine region parameter */ //OXFD特征点中椭圆的参数 double scl; /**< scale of a Lowe-style feature *///LOWE特征点的尺度 double ori; /**< orientation of a Lowe-style feature */ //LOWE特征点的方向 int d; /**< descriptor length */ //特征描述子的长度,即维数,一般是128 double descr[FEATURE_MAX_D]; /**< descriptor */ //128维的特征描述子,即一个double数组 int type; /**< feature type, OXFD or LOWE */ //特征点类型 int category; /**< all-purpose feature category */ struct feature* fwd_match; /**< matching feature from forward image */ //指明此特征点对应的匹配点 struct feature* bck_match; /**< matching feature from backmward image */ //指明此特征点对应的匹配点 struct feature* mdl_match; /**< matching feature from model */ //指明此特征点对应的匹配点 CvPoint2D64f img_pt; /**< location in image */ //特征点的坐标,等于(x,y) CvPoint2D64f mdl_pt; /**< location in model */ //当匹配类型是mdl_match时用到 void* feature_data; /**< user-definable data */ //用户定义的数据: //在SIFT极值点检测中,是detection_data结构的指针 //在k-d树搜索中,是bbf_data结构的指针 //在RANSAC算法中,是ransac_data结构的指针 }; /*从文件中读入图像特征 文件中的特征点格式必须是FEATURE_OXFD或FEATURE_LOWE格式 参数: filename:文件名 type:特征点类型 feat:用来存储特征点的feature数组的指针 返回值:导入的特征点个数 */ /** Reads image features from file. The file should be formatted as from the code provided by the Visual Geometry Group at Oxford or from the code provided by David Lowe. @param filename location of a file containing image features @param type determines how features are input. If \a type is FEATURE_OXFD, the input file is treated as if it is from the code provided by the VGG at Oxford: http://www.robots.ox.ac.uk:5000/~vgg/research/affine/index.html <BR><BR> If \a type is FEATURE_LOWE, the input file is treated as if it is from David Lowe's SIFT code: http://www.cs.ubc.ca/~lowe/keypoints @param feat pointer to an array in which to store imported features; memory for this array is allocated by this function and must be freed by the caller using free(*feat) @return Returns the number of features imported from filename or -1 on error */ extern int import_features( char* filename, int type, struct feature** feat ); /*导出feature数组到文件 参数: filename:文件名 feat:特征数组 n:特征点个数 返回值:0:成功;1:失败 */ /** Exports a feature set to a file formatted depending on the type of features, as specified in the feature struct's type field. @param filename name of file to which to export features @param feat feature array @param n number of features @return Returns 0 on success or 1 on error */ extern int export_features( char* filename, struct feature* feat, int n ); /*在图片上画出特征点 参数: img:图像 feat:特征点数组 n:特征点个数 */ /** Displays a set of features on an image @param img image on which to display features @param feat array of Oxford-type features @param n number of features */ extern void draw_features( IplImage* img, struct feature* feat, int n ); /*计算两个特征描述子间的欧氏距离的平方 参数: f1:第一个特征点 f2:第二个特征点 返回值:欧氏距离的平方 */ /** Calculates the squared Euclidian distance between two feature descriptors. @param f1 first feature @param f2 second feature @return Returns the squared Euclidian distance between the descriptors of \a f1 and \a f2. */ extern double descr_dist_sq( struct feature* f1, struct feature* f2 ); #endif
/* Functions and structures for dealing with image features Copyright (C) 2006-2010 Rob Hess <hess@eecs.oregonstate.edu> @version 1.1.2-20100521 */ /* 此文件中有几个函数的实现:特征点的导入导出,特征点的绘制 */ #include "utils.h" #include "imgfeatures.h" #include <cxcore.h> #include <math.h> /************************ 未暴露接口的一些本地函数的声明 **************************/ static int import_oxfd_features( char*, struct feature** );//导入OXFD格式特征点 static int export_oxfd_features( char*, struct feature*, int );//导出OXFD格式特征点 static void draw_oxfd_features( IplImage*, struct feature*, int );//画OXFD格式特征点 static void draw_oxfd_feature( IplImage*, struct feature*, CvScalar );//画单个点 static int import_lowe_features( char*, struct feature** );//导入LOWE格式特征点 static int export_lowe_features( char*, struct feature*, int );//导出LOWE格式特征点 static void draw_lowe_features( IplImage*, struct feature*, int );//画LOWE格式特征点 static void draw_lowe_feature( IplImage*, struct feature*, CvScalar );//画单个点 /*从文件中读入图像特征 文件中的特征点格式必须是FEATURE_OXFD或FEATURE_LOWE格式 参数: filename:文件名 type:特征点类型 feat:用来存储特征点的feature数组的指针 返回值:导入的特征点个数 */ /* Reads image features from file. The file should be formatted as from the code provided by the Visual Geometry Group at Oxford: @param filename location of a file containing image features @param type determines how features are input. If \a type is FEATURE_OXFD, the input file is treated as if it is from the code provided by the VGG at Oxford:http://www.robots.ox.ac.uk:5000/~vgg/research/affine/index.html If \a type is FEATURE_LOWE, the input file is treated as if it is from David Lowe's SIFT code:http://www.cs.ubc.ca/~lowe/keypoints @param feat pointer to an array in which to store features @return Returns the number of features imported from filename or -1 on error */ int import_features( char* filename, int type, struct feature** feat ) { int n; //根据特征点类型,调用不同的函数完成导入功能 switch( type ) { case FEATURE_OXFD: n = import_oxfd_features( filename, feat );//调用函数,导入OXFD格式特征点 break; case FEATURE_LOWE: n = import_lowe_features( filename, feat );//调用函数,导入LOWE格式特征点 break; default: //特征点格式无法识别 fprintf( stderr, "Warning: import_features(): unrecognized feature" \ "type, %s, line %d\n", __FILE__, __LINE__ ); return -1; } //导入失败 if( n == -1 ) fprintf( stderr, "Warning: unable to import features from %s," \ " %s, line %d\n", filename, __FILE__, __LINE__ ); return n; } /*导出feature数组到文件 参数: filename:文件名 feat:特征数组 n:特征点个数 返回值:0:成功;1:失败 */ /* Exports a feature set to a file formatted depending on the type of features, as specified in the feature struct's type field. @param filename name of file to which to export features @param feat feature array @param n number of features @return Returns 0 on success or 1 on error */ int export_features( char* filename, struct feature* feat, int n ) { int r, type; //参数合法性检查 if( n <= 0 || ! feat ) { fprintf( stderr, "Warning: no features to export, %s line %d\n", __FILE__, __LINE__ ); return 1; } type = feat[0].type;//特征点的类型、 //根据特征点类型,调用不同的函数完成导出功能 switch( type ) { case FEATURE_OXFD: r = export_oxfd_features( filename, feat, n );//调用函数,导出OXFD格式特征点 break; case FEATURE_LOWE: r = export_lowe_features( filename, feat, n );//调用函数,导出LOWE格式特征点 break; default: fprintf( stderr, "Warning: export_features(): unrecognized feature" \ "type, %s, line %d\n", __FILE__, __LINE__ ); return -1; } if( r ) //导出函数返回值非0,表示导出失败 fprintf( stderr, "Warning: unable to export features to %s," \ " %s, line %d\n", filename, __FILE__, __LINE__ ); return r; } /*在图片上画出特征点 参数: img:图像 feat:特征点数组 n:特征点个数 */ /* Draws a set of features on an image @param img image on which to draw features @param feat array of features @param n number of features */ void draw_features( IplImage* img, struct feature* feat, int n ) { int type; //参数合法性检查 if( n <= 0 || ! feat ) { fprintf( stderr, "Warning: no features to draw, %s line %d\n", __FILE__, __LINE__ ); return; } type = feat[0].type;//特征点的类型 //根据特征点类型,调用不同的函数完成绘图功能 switch( type ) { case FEATURE_OXFD: draw_oxfd_features( img, feat, n );//调用函数,在图像上画OXFD格式特征点 break; case FEATURE_LOWE: draw_lowe_features( img, feat, n );//调用函数,在图像上画LOWE格式特征点 break; default: fprintf( stderr, "Warning: draw_features(): unrecognized feature" \ " type, %s, line %d\n", __FILE__, __LINE__ ); break; } } /*计算两个特征描述子间的欧氏距离的平方 参数: f1:第一个特征点 f2:第二个特征点 返回值:欧氏距离的平方 */ /* Calculates the squared Euclidian distance between two feature descriptors. @param f1 first feature @param f2 second feature @return Returns the squared Euclidian distance between the descriptors off1 and f2. */ double descr_dist_sq( struct feature* f1, struct feature* f2 ) { double diff, dsq = 0; double* descr1, * descr2; int i, d; d = f1->d;//f1的特征描述子的长度 if( f2->d != d )//若f1和f2的特征描述子长度不同,返回 return DBL_MAX; descr1 = f1->descr;//f1的特征描述子,一个double数组 descr2 = f2->descr;//f2的特征描述子,一个double数组 //计算欧氏距离的平方,即对应元素的差的平方和 for( i = 0; i < d; i++ ) { diff = descr1[i] - descr2[i]; dsq += diff*diff; } return dsq; } /***************************** 一些未暴露接口的内部函数 *******************************/ /***************************** Local Functions *******************************/ /*从文件中读入OXFD格式的图像特征 参数: filename:文件名 features:用来存储特征点的feature数组的指针 返回值:导入的特征点个数 */ /* Reads image features from file. The file should be formatted as from the code provided by the Visual Geometry Group at Oxford: http://www.robots.ox.ac.uk:5000/~vgg/research/affine/index.html @param filename location of a file containing image features @param features pointer to an array in which to store features @return Returns the number of features imported from filename or -1 on error */ static int import_oxfd_features( char* filename, struct feature** features ) { struct feature* f;//第一个特征点的指针 int i, j, n, d; double x, y, a, b, c, dv; FILE* file;//文件指针 if( ! features ) fatal_error( "NULL pointer error, %s, line %d", __FILE__, __LINE__ ); //打开文件 if( ! ( file = fopen( filename, "r" ) ) ) { fprintf( stderr, "Warning: error opening %s, %s, line %d\n", filename, __FILE__, __LINE__ ); return -1; } //读入特征描述子维数和特征点个数 /* read dimension and number of features */ if( fscanf( file, " %d %d ", &d, &n ) != 2 ) { fprintf( stderr, "Warning: file read error, %s, line %d\n", __FILE__, __LINE__ ); return -1; } //特征描述子维数大于定义的最大维数,出错 if( d > FEATURE_MAX_D ) { fprintf( stderr, "Warning: descriptor too long, %s, line %d\n", __FILE__, __LINE__ ); return -1; } //分配内存,n个feature结构大小,返回首地址给f f = calloc( n, sizeof(struct feature) ); //遍历文件中的n个特征点 for( i = 0; i < n; i++ ) { //读入仿射区域参数 /* read affine region parameters */ if( fscanf( file, " %lf %lf %lf %lf %lf ", &x, &y, &a, &b, &c ) != 5 ) { fprintf( stderr, "Warning: error reading feature #%d, %s, line %d\n", i+1, __FILE__, __LINE__ ); free( f );//发生错误后释放内存 return -1; } //给第i个特征点赋值 f[i].img_pt.x = f[i].x = x;//特征点的x坐标 f[i].img_pt.y = f[i].y = y;//特征点的y坐标 f[i].a = a; f[i].b = b; f[i].c = c; f[i].d = d; f[i].type = FEATURE_OXFD;//特征点类型 //读入特征描述子 /* read descriptor */ for( j = 0; j < d; j++ ) { if( ! fscanf( file, " %lf ", &dv ) ) { fprintf( stderr, "Warning: error reading feature descriptor" \ " #%d, %s, line %d\n", i+1, __FILE__, __LINE__ ); free( f );//发生错误后释放内存 return -1; } f[i].descr[j] = dv;//赋给第i个特征点的第j个特征描述符 } //其他一些没什么用的参数 f[i].scl = f[i].ori = 0;//OXFD特征点无此参数 f[i].category = 0; f[i].fwd_match = f[i].bck_match = f[i].mdl_match = NULL; f[i].mdl_pt.x = f[i].mdl_pt.y = -1; f[i].feature_data = NULL; } //关闭文件 if( fclose(file) ) { fprintf( stderr, "Warning: file close error, %s, line %d\n", __FILE__, __LINE__ ); free( f );//发生错误后释放内存 return -1; } *features = f;//将第一个特征点的指针赋给*feature return n;//返回读入的特征点个数 } /*导出OXFD格式的特征点集到文件 参数: filename:文件名 feat:特征数组 n:特征点个数 返回值:0:成功;1:失败 */ /* Exports a feature set to a file formatted as one from the code provided by the Visual Geometry Group at Oxford: http://www.robots.ox.ac.uk:5000/~vgg/research/affine/index.html @param filename name of file to which to export features @param feat feature array @param n number of features @return Returns 0 on success or 1 on error */ static int export_oxfd_features( char* filename, struct feature* feat, int n ) { FILE* file; int i, j, d; if( n <= 0 ) { fprintf( stderr, "Warning: feature count %d, %s, line %s\n", n, __FILE__, __LINE__ ); return 1; } //打开文件 if( ! ( file = fopen( filename, "w" ) ) ) { fprintf( stderr, "Warning: error opening %s, %s, line %d\n", filename, __FILE__, __LINE__ ); return 1; } d = feat[0].d;//特征描述子的维数 fprintf( file, "%d\n%d\n", d, n );//首先写入特征描述子的维数和特征点个数 //依次写入每个特征点的信息 for( i = 0; i < n; i++ ) { //写入仿射区域参数 fprintf( file, "%f %f %f %f %f", feat[i].x, feat[i].y, feat[i].a, feat[i].b, feat[i].c ); //写入d个特征描述子的元素 for( j = 0; j < d; j++ ) fprintf( file, " %f", feat[i].descr[j] ); fprintf( file, "\n" );//换行 } //关闭文件 if( fclose(file) ) { fprintf( stderr, "Warning: file close error, %s, line %d\n", __FILE__, __LINE__ ); return 1; } return 0; } /*在图像上画出OXFD类型的特征点 参数: img:图像指针 feat:特征数组 n:特征个数 */ /* Draws Oxford-type affine features @param img image on which to draw features @param feat array of Oxford-type features @param n number of features */ static void draw_oxfd_features( IplImage* img, struct feature* feat, int n ) { CvScalar color = CV_RGB( 255, 255, 255 );//颜色 int i; if( img-> nChannels > 1 ) color = FEATURE_OXFD_COLOR; //调用函数,依次画出每个特征点 for( i = 0; i < n; i++ ) draw_oxfd_feature( img, feat + i, color ); } /*在图像上画单个OXFD特征点 参数: img:图像指针 feat:要画的特征点 color:颜色 */ /* Draws a single Oxford-type feature @param img image on which to draw @param feat feature to be drawn @param color color in which to draw */ static void draw_oxfd_feature( IplImage* img, struct feature* feat, CvScalar color ) { double m[4] = { feat->a, feat->b, feat->b, feat->c }; double v[4] = { 0 };//特征向量的数据 double e[2] = { 0 };//特征值的数据 CvMat M, V, E; double alpha, l1, l2; //计算椭圆的轴线和方向 /* compute axes and orientation of ellipse surrounding affine region */ cvInitMatHeader( &M, 2, 2, CV_64FC1, m, CV_AUTOSTEP );//矩阵 cvInitMatHeader( &V, 2, 2, CV_64FC1, v, CV_AUTOSTEP );//2个2*1的特征向量组成的矩阵 cvInitMatHeader( &E, 2, 1, CV_64FC1, e, CV_AUTOSTEP );//特征值 cvEigenVV( &M, &V, &E, DBL_EPSILON, 0, 0 );//计算特征值和特征向量 l1 = 1 / sqrt( e[1] ); l2 = 1 / sqrt( e[0] ); alpha = -atan2( v[1], v[0] ); alpha *= 180 / CV_PI; //画椭圆和十字星 cvEllipse( img, cvPoint( feat->x, feat->y ), cvSize( l2, l1 ), alpha, 0, 360, CV_RGB(0,0,0), 3, 8, 0 ); cvEllipse( img, cvPoint( feat->x, feat->y ), cvSize( l2, l1 ), alpha, 0, 360, color, 1, 8, 0 ); cvLine( img, cvPoint( feat->x+2, feat->y ), cvPoint( feat->x-2, feat->y ), color, 1, 8, 0 ); cvLine( img, cvPoint( feat->x, feat->y+2 ), cvPoint( feat->x, feat->y-2 ), color, 1, 8, 0 ); } /*从文件中读入LOWE特征点 参数: filename:文件名 features:存放特征点的特征数组的指针 返回值:读入的特征点个数 */ /* Reads image features from file. The file should be formatted as from the code provided by David Lowe:http://www.cs.ubc.ca/~lowe/keypoints/ @param filename location of a file containing image features @param features pointer to an array in which to store features @return Returns the number of features imported from filename or -1 on error */ static int import_lowe_features( char* filename, struct feature** features ) { struct feature* f;//第一个特征点的指针 int i, j, n, d; double x, y, s, o, dv; FILE* file; if( ! features ) fatal_error( "NULL pointer error, %s, line %d", __FILE__, __LINE__ ); //打开文件 if( ! ( file = fopen( filename, "r" ) ) ) { fprintf( stderr, "Warning: error opening %s, %s, line %d\n", filename, __FILE__, __LINE__ ); return -1; } //首先读入特征点个数和特征描述子维数 /* read number of features and dimension */ if( fscanf( file, " %d %d ", &n, &d ) != 2 ) { fprintf( stderr, "Warning: file read error, %s, line %d\n", __FILE__, __LINE__ ); return -1; } //特征描述子维数大于定义的最大维数,出错 if( d > FEATURE_MAX_D ) { fprintf( stderr, "Warning: descriptor too long, %s, line %d\n", __FILE__, __LINE__ ); return -1; } //分配内存,n个feature结构大小,返回首地址给f f = calloc( n, sizeof(struct feature) ); //依次读入n个特征点 for( i = 0; i < n; i++ ) { //读入特征点的坐标(注意x,y顺序),尺度和方向 /* read affine region parameters */ if( fscanf( file, " %lf %lf %lf %lf ", &y, &x, &s, &o ) != 4 ) { fprintf( stderr, "Warning: error reading feature #%d, %s, line %d\n", i+1, __FILE__, __LINE__ ); free( f );//出错后释放内存 return -1; } //给第i个特征点赋值 f[i].img_pt.x = f[i].x = x;//特征点的x坐标 f[i].img_pt.y = f[i].y = y;//特征点的y坐标 f[i].scl = s;//特征点的大小,即其主方向的梯度的模值 f[i].ori = o;//特征点的方向,即其主方向 f[i].d = d;//特征描述子的维数 f[i].type = FEATURE_LOWE;//类型 //读入特征描述子 /* read descriptor */ for( j = 0; j < d; j++ ) { if( ! fscanf( file, " %lf ", &dv ) ) { fprintf( stderr, "Warning: error reading feature descriptor" \ " #%d, %s, line %d\n", i+1, __FILE__, __LINE__ ); free( f );//出错后释放内存 return -1; } f[i].descr[j] = dv; } //其他一些没什么用的参数 f[i].a = f[i].b = f[i].c = 0; f[i].category = 0; f[i].fwd_match = f[i].bck_match = f[i].mdl_match = NULL; f[i].mdl_pt.x = f[i].mdl_pt.y = -1; } //关闭文件 if( fclose(file) ) { fprintf( stderr, "Warning: file close error, %s, line %d\n", __FILE__, __LINE__ ); free( f );//出错后释放内存 return -1; } *features = f;//首地址赋给*features return n;//返回读入的特征点个数 } /*导出LOWE格式特征点集合到文件 参数: filename:文件名 feat:特征点数组 n:特征点个数 返回值:0:成功;1:失败 */ /* Exports a feature set to a file formatted as one from the code provided by David Lowe:http://www.cs.ubc.ca/~lowe/keypoints/ @param filename name of file to which to export features @param feat feature array @param n number of features @return Returns 0 on success or 1 on error */ static int export_lowe_features( char* filename, struct feature* feat, int n ) { FILE* file; int i, j, d; if( n <= 0 ) { fprintf( stderr, "Warning: feature count %d, %s, line %s\n", n, __FILE__, __LINE__ ); return 1; } //打开文件 if( ! ( file = fopen( filename, "w" ) ) ) { fprintf( stderr, "Warning: error opening %s, %s, line %d\n", filename, __FILE__, __LINE__ ); return 1; } d = feat[0].d;//特征描述子维数 fprintf( file, "%d %d\n", n, d );//首先写入特征点个数和特征描述子维数 //依次写入每个特征点的信息 for( i = 0; i < n; i++ ) { //写入特征点坐标(注意x,y顺序),尺度,方向 fprintf( file, "%f %f %f %f", feat[i].y, feat[i].x, feat[i].scl, feat[i].ori ); //写入特征描述子 for( j = 0; j < d; j++ ) { //每行20个元素 /* write 20 descriptor values per line */ if( j % 20 == 0 ) fprintf( file, "\n" ); fprintf( file, " %d", (int)(feat[i].descr[j]) ); } fprintf( file, "\n" ); } //关闭文件 if( fclose(file) ) { fprintf( stderr, "Warning: file close error, %s, line %d\n", __FILE__, __LINE__ ); return 1; } return 0; } /*在图像上画LOWE特征点 参数: img:图像指针 feat:特征点数组 n:特征点个数 */ /* Draws Lowe-type features @param img image on which to draw features @param feat array of Oxford-type features @param n number of features */ static void draw_lowe_features( IplImage* img, struct feature* feat, int n ) { CvScalar color = CV_RGB( 255, 255, 255 );//颜色 int i; if( img-> nChannels > 1 ) color = FEATURE_LOWE_COLOR; //调用函数,依次画n个特征点 for( i = 0; i < n; i++ ) draw_lowe_feature( img, feat + i, color ); } /*画单个LOWE特征点 参数: img:图像指针 feat:要画的特征点 color:颜色 */ /* Draws a single Lowe-type feature @param img image on which to draw @param feat feature to be drawn @param color color in which to draw */ static void draw_lowe_feature( IplImage* img, struct feature* feat, CvScalar color ) { int len, hlen, blen, start_x, start_y, end_x, end_y, h1_x, h1_y, h2_x, h2_y; double scl, ori; double scale = 5.0; double hscale = 0.75; CvPoint start, end, h1, h2; /* compute points for an arrow scaled and rotated by feat's scl and ori */ //箭头杆的起点的坐标 start_x = cvRound( feat->x ); start_y = cvRound( feat->y ); scl = feat->scl;//特征点的大小 ori = feat->ori;//特征点的方向,弧度 len = cvRound( scl * scale );//箭头杆的长度 hlen = cvRound( scl * hscale );//箭头分叉的长度 blen = len - hlen; //箭头杆的终点的坐标 end_x = cvRound( len * cos( ori ) ) + start_x; end_y = cvRound( len * -sin( ori ) ) + start_y; //箭头的右分叉的起点的坐标 h1_x = cvRound( blen * cos( ori + CV_PI / 18.0 ) ) + start_x; h1_y = cvRound( blen * -sin( ori + CV_PI / 18.0 ) ) + start_y; //箭头的左分叉的起点的坐标 h2_x = cvRound( blen * cos( ori - CV_PI / 18.0 ) ) + start_x; h2_y = cvRound( blen * -sin( ori - CV_PI / 18.0 ) ) + start_y; start = cvPoint( start_x, start_y );//箭头杆的起点 end = cvPoint( end_x, end_y );//箭头杆的终点 h1 = cvPoint( h1_x, h1_y );//箭头的右分叉的起点 h2 = cvPoint( h2_x, h2_y );//箭头的左分叉的起点 cvLine( img, start, end, color, 1, 8, 0 );//画箭头杆 cvLine( img, end, h1, color, 1, 8, 0 );//画右分叉 cvLine( img, end, h2, color, 1, 8, 0 );//画左分叉 }