LinkedIn Cubert安装指南

最近工作需要,调研了一下LinkedIn开源的用于复杂大数据分析的高性能计算引擎Cubert。自己测了下,感觉比较适合做报表统计中的Cube计算和Join计算,效率往往比Hive高很多倍,节省资源和时间。

下面看下这个框架的介绍:

Cubert完全用Java开发,并提供一种脚本语言。它是针对报表领域里经常出现的复杂连接和聚合而设计的。Cubert使用MeshJoin算法处理大时间窗口下的大数据集,CPU和内存利用率显著提升。CUBE是Cubert定义的一个新操作符,可以计算累加和非累加分析维度。非累加维度是计算密集型的,如计算一个时间窗口内不同的用户数,但CUBE能加快这些运算,而且还可以计算准确的百分等级,如中位数统计,动态上卷内部维度以及在单个任务中计算多个度量值。

Cubert最适合于重复的报表工作流程,它利用部分结果缓存和增量处理技术来提高速度。最后,一种新的稀疏矩阵乘法算法可以用于大型图的分析计算。

项目地址在:https://github.com/linkedin/Cubert

一、Git Clone

首先Fork到我的github上。然后,
克隆项目

git clone git@github.com:OopsOutOfMemory/Cubert.git ./cubert

配置环境变量:

注意CUBERT_HOME是在cubert/release后bin目录也在release下。

export HADOOP_HOME=/Users/shengli/cloudera/${CDH}/hadoop
export CUBERT_HOME=/Users/shengli/git_repos/cubert/release

二、编译打包:

指定Hadoop的版本号:

vim ./gradle.properties 修改 hadoopVersion=2.5.0

编译打包

Cubert是基于Gradle进行构建的,所以要执行./gradlew来进行编译导报

shengli-mac$ ./gradlew 
:genParser
:compileJava
warning: Supported source version 'RELEASE_6' from annotation processor 'org.antlr.v4.runtime.misc.NullUsageProcessor' less than -source '1.8'
Note: Some input files use or override a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
Note: Some input files use unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.
1 warning
:processResources UP-TO-DATE
:classes
:jar
:dist

BUILD SUCCESSFUL

cubert包

shengli-mac$ ll release/lib/
total 12488
-rw-r--r--  1 shengli  staff  6392989 Jun 11 14:15 cubert-0.2.21.jar

配置环境变量

将$CUBERT_HOME/bin配置到PATH内,然后:

shengli-mac$ cubert -h
Using HADOOP_CLASSPATH=:/Users/shengli/git_repos/cubert/release/lib/*
usage: ScriptExecutor <cubert script file> [options]
 -c,--compile stop after compilation  -d,--debug print debuging information  -D <property=value> use value for given property  -describe describe the schemas of output datasets  -f,--param_file <file> use given parameter file  -h,--help shows this message  -j,--json show the plan in JSON  -p,--parse stop after parsing  -P,--cache_path <lib path> classpath to be uploaded to distributed                               cache
 -parallel run independent jobs in parallel  -perf enable performance profiling  -s,--preprocess show the script after preprocessing  -x <job id/name> execute this job only

三、Cubert Example

预处理:

 shengli-mac$ cat release/examples/word
wordcount.cmr  words.txt      
shengli-mac$ cat release/examples/wordcount.cmr 
PROGRAM "Word Count";

JOB "count words"
    REDUCERS 5;
    MAP {
        data = LOAD "$CUBERT_HOME/examples/words.txt" USING TEXT("schema": "STRING word");
        with_count = FROM data GENERATE word, 1L AS count;
    }
    SHUFFLE with_count PARTITIONED ON word AGGREGATES COUNT(word) AS count;
    REDUCE {
        counted = GROUP with_count BY word AGGREGATES SUM(count) AS count;
    }
    STORE counted INTO "output" USING TEXT();
END
shengli-mac$ pwd
/Users/shengli/git_repos/cubert

查看预处理后的cubert脚本

shengli-mac$ cubert release/examples/wordcount.cmr -s
Using HADOOP_CLASSPATH=:/Users/shengli/git_repos/cubert/release/lib/*
PROGRAM "Word Count";

JOB "count words"
    REDUCERS 5;
    MAP {
        data = LOAD "/Users/shengli/git_repos/cubert/release/examples/words.txt" USING TEXT("schema": "STRING word");
        with_count = FROM data GENERATE word, 1L AS count;
    }
    SHUFFLE with_count PARTITIONED ON word AGGREGATES COUNT(word) AS count;
    REDUCE {
        counted = GROUP with_count BY word AGGREGATES SUM(count) AS count;
    }
    STORE counted INTO "output" USING TEXT();
END

-p 脚本Parse解析语法

这里演示了如果我们随便改输入目录,Parse会解析失败。

shengli-mac$ cubert release/examples/wordcount.cmr -p
Using HADOOP_CLASSPATH=:/Users/shengli/git_repos/cubert/release/lib/*
line 2:0 extraneous input 'ssssss' expecting {<EOF>, CREATEDICTIONARY, FUNCTION, JOB, ONCOMPLETION, REGISTER, SET}

Cannot parse cubert script. Exiting.

Cannot compile cubert script. Exiting.
Exception in thread "main" java.text.ParseException
    at com.linkedin.cubert.plan.physical.PhysicalParser.parsingTask(PhysicalParser.java:197)
    at com.linkedin.cubert.plan.physical.PhysicalParser.parseInputStream(PhysicalParser.java:161)
    at com.linkedin.cubert.plan.physical.PhysicalParser.parseProgram(PhysicalParser.java:156)
    at com.linkedin.cubert.ScriptExecutor.compile(ScriptExecutor.java:304)
    at com.linkedin.cubert.ScriptExecutor.main(ScriptExecutor.java:523)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:483)
    at org.apache.hadoop.util.RunJar.main(RunJar.java:212)

-pj json显示

shengli-mac$ cubert release/examples/wordcount.cmr -pj
Using HADOOP_CLASSPATH=:/Users/shengli/git_repos/cubert/release/lib/*
{
  "program" : "Word Count",
  "hadoopConf" : {
  },
  "libjars" : [ ],
  "jobs" : [ {
    "pigudfs" : {
    },
    "name" : "count words",
    "mappers" : 0,
    "reducers" : 5,
    "map" : [ {
      "input" : {
        "line" : "data = LOAD \"/Users/shengli/git_repos/cubert/release/examples/words.txt\" USING TEXT(\"schema\": \"STRING word\");",
        "name" : "data",
        "type" : "TEXT",
        "params" : {
          "schema" : "STRING word"
        },
        "path" : [ "/Users/shengli/git_repos/cubert/release/examples/words.txt" ]
      },
      "operators" : [ {
        "operator" : "GENERATE",
        "input" : "data",
        "output" : "with_count",
        "outputTuple" : [ {
          "col_name" : "word",
          "expression" : {
            "function" : "INPUT_PROJECTION",
            "arguments" : [ "word" ]
          }
        }, {
          "col_name" : "count",
          "expression" : {
            "function" : "CONSTANT",
            "arguments" : [ 1, "long" ]
          }
        } ],
        "line" : "with_count = FROM data GENERATE word, 1L AS count;"
      } ]
    } ],
    "shuffle" : {
      "line" : "SHUFFLE with_count PARTITIONED ON word AGGREGATES COUNT(word) AS count;",
      "name" : "with_count",
      "type" : "SHUFFLE",
      "partitionKeys" : [ "word" ],
      "pivotKeys" : [ "word" ],
      "aggregates" : [ {
        "type" : "COUNT",
        "input" : [ "word" ],
        "output" : "count"
      } ]
    },
    "reduce" : [ {
      "operator" : "GROUP_BY",
      "input" : "with_count",
      "output" : "counted",
      "groupBy" : [ "word" ],
      "aggregates" : [ {
        "type" : "SUM",
        "input" : [ "count" ],
        "output" : "count"
      } ],
      "line" : "counted = GROUP with_count BY word AGGREGATES SUM(count) AS count;"
    } ],
    "cacheIndex" : [ ],
    "output" : {
      "name" : "counted",
      "path" : "output",
      "type" : "TEXT",
      "line" : "STORE counted INTO \"output\" USING TEXT();",
      "params" : {
        "overwrite" : "false"
      }
    }
  } ]
}

-c 编译脚本

shengli-mac$ cubert release/examples/wordcount.cmr -c
Using HADOOP_CLASSPATH=:/Users/shengli/git_repos/cubert/release/lib/*
15/06/11 14:38:16 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
[Dependency Analyzer] Program inputs: [/Users/shengli/git_repos/cubert/release/examples/words.txt]
Analyzing job [count words]...


shengli-mac$ cubert release/examples/wordcount.cmr -cj
Using HADOOP_CLASSPATH=:/Users/shengli/git_repos/cubert/release/lib/*
15/06/11 14:38:38 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
[Dependency Analyzer] Program inputs: [/Users/shengli/git_repos/cubert/release/examples/words.txt]
Analyzing job [count words]...
{
  "program" : "Word Count",
  "hadoopConf" : {
  },
  "libjars" : [ ],
  "jobs" : [ {
    "pigudfs" : {
    },
    "name" : "count words",
    "mappers" : 0,
    "reducers" : 5,
    "map" : [ {
      "input" : {
        "line" : "data = LOAD \"/Users/shengli/git_repos/cubert/release/examples/words.txt\" USING TEXT(\"schema\": \"STRING word\");",
        "name" : "data",
        "type" : "TEXT",
        "params" : {
          "schema" : "STRING word"
        },
        "path" : [ "/Users/shengli/git_repos/cubert/release/examples/words.txt" ],
        "schema" : [ {
          "name" : "word",
          "type" : "STRING"
        } ]
      },
      "operators" : [ {
        "operator" : "GENERATE",
        "input" : "data",
        "output" : "with_count",
        "outputTuple" : [ {
          "col_name" : "word",
          "expression" : {
            "function" : "INPUT_PROJECTION",
            "arguments" : [ "word" ]
          }
        }, {
          "col_name" : "count",
          "expression" : {
            "function" : "CONSTANT",
            "arguments" : [ 1, "long" ]
          }
        } ],
        "line" : "with_count = FROM data GENERATE word, 1L AS count;",
        "schema" : [ {
          "name" : "word",
          "type" : "STRING"
        }, {
          "name" : "count",
          "type" : "LONG"
        } ]
      } ]
    } ],
    "shuffle" : {
      "line" : "SHUFFLE with_count PARTITIONED ON word AGGREGATES COUNT(word) AS count;",
      "name" : "with_count",
      "type" : "SHUFFLE",
      "partitionKeys" : [ "word" ],
      "pivotKeys" : [ "word" ],
      "aggregates" : [ {
        "type" : "COUNT",
        "input" : [ "word" ],
        "output" : "count"
      } ],
      "schema" : [ {
        "name" : "word",
        "type" : "STRING"
      }, {
        "name" : "count",
        "type" : "LONG"
      } ]
    },
    "reduce" : [ {
      "operator" : "GROUP_BY",
      "input" : "with_count",
      "output" : "counted",
      "groupBy" : [ "word" ],
      "aggregates" : [ {
        "type" : "SUM",
        "input" : [ "count" ],
        "output" : "count"
      } ],
      "line" : "counted = GROUP with_count BY word AGGREGATES SUM(count) AS count;",
      "schema" : [ {
        "name" : "word",
        "type" : "STRING"
      }, {
        "name" : "count",
        "type" : "LONG"
      } ]
    } ],
    "cacheIndex" : [ ],
    "output" : {
      "name" : "counted",
      "path" : "output",
      "type" : "TEXT",
      "line" : "STORE counted INTO \"output\" USING TEXT();",
      "params" : {
        "overwrite" : "false"
      },
      "schema" : [ {
        "name" : "word",
        "type" : "STRING"
      }, {
        "name" : "count",
        "type" : "LONG"
      } ]
    },
    "dependsOn" : [ ]
  } ],
  "input" : {
    "/Users/shengli/git_repos/cubert/release/examples/words.txt" : {
      "type" : "TEXT",
      "schema" : [ {
        "name" : "word",
        "type" : "STRING"
      } ]
    }
  },
  "profileMode" : false
}

-cd 编译并显示调试信息:

shengli-mac$ cubert release/examples/wordcount.cmr -cd
Using HADOOP_CLASSPATH=:/Users/shengli/git_repos/cubert/release/lib/*
15/06/11 14:39:30 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
[Dependency Analyzer] Program inputs: [/Users/shengli/git_repos/cubert/release/examples/words.txt]
Analyzing job [count words]...
---------------------------------------------
with_count = FROM data GENERATE word, 1L AS count;

Precondition for data
    Schema: [STRING word]
    Partition Keys: null
    Sort Keys:      null

Post Condition
    Schema: [STRING word, LONG count]
    Partition Keys: null
    Sort Keys:      null
---------------------------------------------
counted = GROUP with_count BY word AGGREGATES SUM(count) AS count;

Precondition for with_count
    Schema: [STRING word, LONG count]
    Partition Keys: [word]
    Sort Keys:      [word]

Post Condition
    Schema: [STRING word, LONG count]
    Partition Keys: [word]
    Sort Keys:      [word]

运行脚本提交

eg: cubert script.cmr

Note:
如果指定了HADOOP_HOME和HADOOP_CONF_DIR
下面的路径必须是HDFS的文件路径

shengli-mac$ cubert release/examples/wordcount.cmr Using HADOOP_CLASSPATH=:/Users/shengli/git_repos/cubert/release/lib/*
15/06/11 14:41:06 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
[Dependency Analyzer] Program inputs: [/Users/shengli/git_repos/cubert/release/examples/words.txt] Analyzing job [count words]... 15/06/11 14:41:07 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
Executing jobs serially
Executing job [count words]....
15/06/11 14:41:07 INFO Configuration.deprecation: mapreduce.partitioner.class is deprecated. Instead, use mapreduce.job.partitioner.class Setting partitioner: com.linkedin.cubert.plan.physical.CubertPartitioner 15/06/11 14:41:07 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
15/06/11 14:41:07 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
15/06/11 14:41:08 INFO mapreduce.JobSubmitter: Cleaning up the staging area /tmp/hadoop-yarn/staging/shengli/.staging/job_1434002924656_0001
15/06/11 14:41:08 WARN security.UserGroupInformation: PriviledgedActionException as:shengli (auth:SIMPLE) cause:org.apache.hadoop.mapreduce.lib.input.InvalidInputException: Input path does not exist: hdfs://localhost:8020/Users/shengli/git_repos/cubert/release/examples/words.txt Exception in thread "main" org.apache.hadoop.mapreduce.lib.input.InvalidInputException: Input path does not exist: hdfs://localhost:8020/Users/shengli/git_repos/cubert/release/examples/words.txt at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:321)
    at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.listStatus(FileInputFormat.java:264)
    at org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.PigTextInputFormat.listStatus(PigTextInputFormat.java:36)
    at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.getSplits(FileInputFormat.java:385)
    at com.linkedin.cubert.io.CubertInputFormat.getSplits(CubertInputFormat.java:112)
    at org.apache.hadoop.mapreduce.JobSubmitter.writeNewSplits(JobSubmitter.java:589)
    at org.apache.hadoop.mapreduce.JobSubmitter.writeSplits(JobSubmitter.java:606)
    at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:490)
    at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1295)
    at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1292)
    at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1642)
    at org.apache.hadoop.mapreduce.Job.submit(Job.java:1292)
    at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:1313)
    at com.linkedin.cubert.plan.physical.JobExecutor.run(JobExecutor.java:151)
    at com.linkedin.cubert.plan.physical.ExecutorService.executeJob(ExecutorService.java:253)
    at com.linkedin.cubert.plan.physical.ExecutorService.executeJobId(ExecutorService.java:219)
    at com.linkedin.cubert.plan.physical.ExecutorService.execute(ExecutorService.java:163)
    at com.linkedin.cubert.ScriptExecutor.execute(ScriptExecutor.java:385)
    at com.linkedin.cubert.ScriptExecutor.main(ScriptExecutor.java:575)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:483)
    at org.apache.hadoop.util.RunJar.main(RunJar.java:212)
shengli-mac$ hdfs dfs -copyFromLocal $CUBERT_HOME/examples/words.txt /cubert/words.txt
15/06/11 14:44:41 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
shengli-mac$ hdfs dfs -ls /cubert
15/06/11 14:44:49 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 1 items
-rw-r--r--   1 shengli supergroup      27294 2015-06-11 14:44 /cubert/words.txt

修改:

 data = LOAD "/cubert/words.txt" USING TEXT("schema": "STRING word");

再次运行:

shengli-mac$ cubert release/examples/wordcount.cmr 
Using HADOOP_CLASSPATH=:/Users/shengli/git_repos/cubert/release/lib/*
15/06/11 14:46:12 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
[Dependency Analyzer] Program inputs: [/cubert/words.txt]
Analyzing job [count words]...
15/06/11 14:46:13 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
Executing jobs serially
Executing job [count words]....
15/06/11 14:46:13 INFO Configuration.deprecation: mapreduce.partitioner.class is deprecated. Instead, use mapreduce.job.partitioner.class
Setting partitioner: com.linkedin.cubert.plan.physical.CubertPartitioner
15/06/11 14:46:13 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
15/06/11 14:46:13 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
15/06/11 14:46:13 INFO input.FileInputFormat: Total input paths to process : 1
15/06/11 14:46:14 INFO util.MapRedUtil: Total input paths to process : 1
15/06/11 14:46:14 INFO mapreduce.JobSubmitter: number of splits:1
15/06/11 14:46:14 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1434002924656_0002
15/06/11 14:46:14 INFO impl.YarnClientImpl: Submviitted application application_1434002924656_0002
15/06/11 14:46:14 INFO mapreduce.Job: The url to track the job: http://shengli-mac.local:8088/proxy/application_1434002924656_0002/
Job: [count words], More information at: http://shengli-mac.local:8088/proxy/application_1434002924656_0002/
50% complete
60% complete
70% complete
80% complete
90% complete
Finished job [count words]....
100% complete
15/06/11 14:46:44 INFO mapred.ClientServiceDelegate: Application state is completed. FinalApplicationStatus=SUCCEEDED. Redirecting to job history server
Statistics of individual Jobs
--------------------------------------------
Job Name                         minMapperTime   maxMapperTime   avgMapperTime     medianMapperTime  minReducerTime  maxReducerTime  avgReducerTime    medianReducerTime
job_1434002924656_0002                    3190            3190            3190                 3190            3401            3914            3686                 3849

Aggregated Hadoop Counters for the Cubert Job:
Duration: 30949 ms
Counters: 49
    File System Counters
        FILE: Number of bytes read=20667
        FILE: Number of bytes written=692647
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=27394
        HDFS: Number of bytes written=13129
        HDFS: Number of read operations=18
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=10
    Job Counters 
        Launched map tasks=1
        Launched reduce tasks=5
        Data-local map tasks=1
        Total time spent by all maps in occupied slots (ms)=3190
        Total time spent by all reduces in occupied slots (ms)=18430
        Total time spent by all map tasks (ms)=3190
        Total time spent by all reduce tasks (ms)=18430
        Total vcore-seconds taken by all map tasks=3190
        Total vcore-seconds taken by all reduce tasks=18430
        Total megabyte-seconds taken by all map tasks=3266560
        Total megabyte-seconds taken by all reduce tasks=18872320
    Map-Reduce Framework
        Map input records=5334
        Map output records=5334
        Map output bytes=53964
        Map output materialized bytes=20667
        Input split bytes=100
        Combine input records=5334
        Combine output records=1421
        Reduce input groups=0
        Reduce shuffle bytes=20667
        Reduce input records=1421
        Reduce output records=1421
        Spilled Records=2842
        Shuffled Maps =5
        Failed Shuffles=0
        Merged Map outputs=5
        GC time elapsed (ms)=276
        CPU time spent (ms)=0
        Physical memory (bytes) snapshot=0
        Virtual memory (bytes) snapshot=0
        Total committed heap usage (bytes)=1235746816
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters 
        Bytes Read=0
    File Output Format Counters 
        Bytes Written=13129

查看日志:
yarn logs -applicationId application_1434002924656_0002 |

-x 分段运行Job

在脚本里我们指定了jobName
本例是count words, 如果随便指定jobName则会抛出异常。

shengli-mac$ cubert release/examples/wordcount.cmr -x "our first program"
Using HADOOP_CLASSPATH=:/Users/shengli/git_repos/cubert/release/lib/*
15/06/11 15:24:45 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
[Dependency Analyzer] Program inputs: [/cubert/words.txt]
Analyzing job [count words]...
Exception in thread "main" java.lang.IllegalStateException: ERROR: There is no job that matches [our]
    at com.linkedin.cubert.ScriptExecutor.getJobId(ScriptExecutor.java:604)
    at com.linkedin.cubert.ScriptExecutor.main(ScriptExecutor.java:568)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:483)
    at org.apache.hadoop.util.RunJar.main(RunJar.java:212)

原创文章,转载请注明:

转载自:OopsOutOfMemory盛利的Blog,作者: OopsOutOfMemory

本文链接地址:http://blog.csdn.net/oopsoom/article/details/46545973

注:本文基于署名-非商业性使用-禁止演绎 2.5 中国大陆(CC BY-NC-ND 2.5 CN)协议,欢迎转载、转发和评论,但是请保留本文作者署名和文章链接。如若需要用于商业目的或者与授权方面的协商,请联系我。

image

你可能感兴趣的:(JOIN,hive,cube,LinkedIn,cubert)