/**M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "cvtest.h"
static const char* distrans_param_names[] = { "size", "dist_type", "labels", 0 };
static const CvSize distrans_sizes[] = {{30,30}, {320, 240}, {720,480}, {-1,-1}};
static const CvSize distrans_whole_sizes[] = {{320,240}, {320, 240}, {720,480}, {-1,-1}};
static const char* distrans_types[] = { "c_3x3", "l1_3x3", "l2_3x3", "l2_5x5", 0 };
static const int distrans_labels[] = { 0, 1, -1 };
class CV_DisTransTest : public CvArrTest
{
public:
CV_DisTransTest();
protected:
void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types );
double get_success_error_level( int test_case_idx, int i, int j );
void run_func();
void prepare_to_validation( int );
void get_minmax_bounds( int i, int j, int type, CvScalar* low, CvScalar* high );
int prepare_test_case( int test_case_idx );
int write_default_params(CvFileStorage* fs);
void get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types,
CvSize** whole_sizes, bool *are_images );
void print_timing_params( int test_case_idx, char* ptr, int params_left );
int mask_size;
int dist_type;
int fill_labels;
float mask[3];
};
CV_DisTransTest::CV_DisTransTest()
: CvArrTest( "distrans", "cvDistTransform", "" )
{
test_array[INPUT].push(NULL);
test_array[OUTPUT].push(NULL);
test_array[OUTPUT].push(NULL);
test_array[REF_OUTPUT].push(NULL);
test_array[REF_OUTPUT].push(NULL);
optional_mask = false;
element_wise_relative_error = true;
default_timing_param_names = distrans_param_names;
depth_list = 0;
size_list = distrans_sizes;
whole_size_list = distrans_whole_sizes;
cn_list = 0;
}
void CV_DisTransTest::get_test_array_types_and_sizes( int test_case_idx,
CvSize** sizes, int** types )
{
CvRNG* rng = ts->get_rng();
CvArrTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
types[INPUT][0] = CV_8UC1;
types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_32FC1;
types[OUTPUT][1] = types[REF_OUTPUT][1] = CV_32SC1;
if( cvTsRandInt(rng) & 1 )
{
mask_size = 3;
dist_type = cvTsRandInt(rng) % 4;
dist_type = dist_type == 0 ? CV_DIST_C : dist_type == 1 ? CV_DIST_L1 :
dist_type == 2 ? CV_DIST_L2 : CV_DIST_USER;
}
else
{
mask_size = 5;
dist_type = cvTsRandInt(rng) % 10;
dist_type = dist_type == 0 ? CV_DIST_C : dist_type == 1 ? CV_DIST_L1 :
dist_type < 6 ? CV_DIST_L2 : CV_DIST_USER;
}
// for now, check only the "labeled" distance transform mode
fill_labels = 0;
if( !fill_labels )
sizes[OUTPUT][1] = sizes[REF_OUTPUT][1] = cvSize(0,0);
if( dist_type == CV_DIST_USER )
{
mask[0] = (float)(1.1 - cvTsRandReal(rng)*0.2);
mask[1] = (float)(1.9 - cvTsRandReal(rng)*0.8);
mask[2] = (float)(3. - cvTsRandReal(rng));
}
}
double CV_DisTransTest::get_success_error_level( int /**test_case_idx*/, int /**i*/, int /**j*/ )
{
CvSize sz = cvGetMatSize(&test_mat[INPUT][0]);
return dist_type == CV_DIST_C || dist_type == CV_DIST_L1 ? 0 : 0.01*MAX(sz.width, sz.height);
}
void CV_DisTransTest::get_minmax_bounds( int i, int j, int type, CvScalar* low, CvScalar* high )
{
CvArrTest::get_minmax_bounds( i, j, type, low, high );
if( i == INPUT && CV_MAT_DEPTH(type) == CV_8U )
{
*low = cvScalarAll(0);
*high = cvScalarAll(10);
}
}
int CV_DisTransTest::prepare_test_case( int test_case_idx )
{
int code = CvArrTest::prepare_test_case( test_case_idx );
if( code > 0 )
{
// the function's response to an "all-nonzeros" image is not determined,
// so put at least one zero point
CvMat* mat = &test_mat[INPUT][0];
CvRNG* rng = ts->get_rng();
int i = cvTsRandInt(rng) % mat->rows;
int j = cvTsRandInt(rng) % mat->cols;
mat->data.ptr[mat->step*i + j] = 0;
}
return code;
}
void CV_DisTransTest::run_func()
{
cvDistTransform( test_array[INPUT][0], test_array[OUTPUT][0], dist_type, mask_size,
dist_type == CV_DIST_USER ? mask : 0, test_array[OUTPUT][1] );
}
static void
cvTsDistTransform( const CvMat* _src, CvMat* _dst, int dist_type,
int mask_size, float* _mask, CvMat* /**_labels*/ )
{
int i, j, k;
int width = _src->cols, height = _src->rows;
const float init_val = 1e6;
float mask[3];
CvMat* temp;
int ofs[16];
float delta[16];
int tstep, count;
assert( mask_size == 3 || mask_size == 5 );
if( dist_type == CV_DIST_USER )
memcpy( mask, _mask, sizeof(mask) );
else if( dist_type == CV_DIST_C )
{
mask_size = 3;
mask[0] = mask[1] = 1.f;
}
else if( dist_type == CV_DIST_L1 )
{
mask_size = 3;
mask[0] = 1.f;
mask[1] = 2.f;
}
else if( mask_size == 3 )
{
mask[0] = 0.955f;
mask[1] = 1.3693f;
}
else
{
mask[0] = 1.0f;
mask[1] = 1.4f;
mask[2] = 2.1969f;
}
temp = cvCreateMat( height + mask_size-1, width + mask_size-1, CV_32F );
tstep = temp->step / sizeof(float);
if( mask_size == 3 )
{
count = 4;
ofs[0] = -1; delta[0] = mask[0];
ofs[1] = -tstep-1; delta[1] = mask[1];
ofs[2] = -tstep; delta[2] = mask[0];
ofs[3] = -tstep+1; delta[3] = mask[1];
}
else
{
count = 8;
ofs[0] = -1; delta[0] = mask[0];
ofs[1] = -tstep-2; delta[1] = mask[2];
ofs[2] = -tstep-1; delta[2] = mask[1];
ofs[3] = -tstep; delta[3] = mask[0];
ofs[4] = -tstep+1; delta[4] = mask[1];
ofs[5] = -tstep+2; delta[5] = mask[2];
ofs[6] = -tstep*2-1; delta[6] = mask[2];
ofs[7] = -tstep*2+1; delta[7] = mask[2];
}
for( i = 0; i < mask_size/2; i++ )
{
float* t0 = (float*)(temp->data.ptr + i*temp->step);
float* t1 = (float*)(temp->data.ptr + (temp->rows - i - 1)*temp->step);
for( j = 0; j < width + mask_size - 1; j++ )
t0[j] = t1[j] = init_val;
}
for( i = 0; i < height; i++ )
{
uchar* s = _src->data.ptr + i*_src->step;
float* tmp = (float*)(temp->data.ptr + temp->step*(i + (mask_size/2))) + (mask_size/2);
for( j = 0; j < mask_size/2; j++ )
tmp[-j-1] = tmp[j + width] = init_val;
for( j = 0; j < width; j++ )
{
if( s[j] == 0 )
tmp[j] = 0;
else
{
float min_dist = init_val;
for( k = 0; k < count; k++ )
{
float t = tmp[j+ofs[k]] + delta[k];
if( min_dist > t )
min_dist = t;
}
tmp[j] = min_dist;
}
}
}
for( i = height - 1; i >= 0; i-- )
{
float* d = (float*)(_dst->data.ptr + i*_dst->step);
float* tmp = (float*)(temp->data.ptr + temp->step*(i + (mask_size/2))) + (mask_size/2);
for( j = width - 1; j >= 0; j-- )
{
float min_dist = tmp[j];
if( min_dist > mask[0] )
{
for( k = 0; k < count; k++ )
{
float t = tmp[j-ofs[k]] + delta[k];
if( min_dist > t )
min_dist = t;
}
tmp[j] = min_dist;
}
d[j] = min_dist;
}
}
cvReleaseMat( &temp );
}
void CV_DisTransTest::prepare_to_validation( int /**test_case_idx*/ )
{
cvTsDistTransform( &test_mat[INPUT][0], &test_mat[REF_OUTPUT][0],
dist_type, mask_size, mask, 0 );
}
int CV_DisTransTest::write_default_params( CvFileStorage* fs )
{
int code = CvArrTest::write_default_params( fs );
if( code < 0 )
return code;
if( ts->get_testing_mode() == CvTS::TIMING_MODE )
{
start_write_param( fs );
write_string_list( fs, "dist_type", distrans_types );
write_int_list( fs, "labels", distrans_labels, -1, -1 );
}
return code;
}
void CV_DisTransTest::get_timing_test_array_types_and_sizes( int test_case_idx,
CvSize** sizes, int** types, CvSize** whole_sizes, bool *are_images )
{
CvArrTest::get_timing_test_array_types_and_sizes( test_case_idx, sizes, types,
whole_sizes, are_images );
const char* distype_str = cvReadString( find_timing_param( "dist_type" ), "l2_5x5" );
mask_size = strstr( distype_str, "3x3" ) ? 3 : 5;
dist_type = distype_str[0] == 'c' ? CV_DIST_C : distype_str[1] == '1' ? CV_DIST_L1 : CV_DIST_L2;
fill_labels = cvReadInt( find_timing_param( "labels" ), 0 );
types[INPUT][0] = CV_8UC1;
types[OUTPUT][0] = CV_32FC1;
types[OUTPUT][1] = CV_32SC1;
if( !fill_labels )
sizes[OUTPUT][1] = whole_sizes[OUTPUT][1] = cvSize(0,0);
}
void CV_DisTransTest::print_timing_params( int test_case_idx, char* ptr, int params_left )
{
sprintf( ptr, "%s,", cvReadString( find_timing_param( "dist_type" ), "l2_5x5" ) );
ptr += strlen(ptr);
sprintf( ptr, "%s,", fill_labels ? "labels" : "no_labels" );
ptr += strlen(ptr);
params_left -= 2;
CvArrTest::print_timing_params( test_case_idx, ptr, params_left );
}
CV_DisTransTest distrans_test;