索引节点inode

Linux 为每个文件分配一个称为索引节点的号码inode,可以将inode简单理解成一个指针,它永远指向本文件的具体存储位置。系统是通过索引节点(而不是文件名)来定位每一个文件。例如:假设我们在硬盘当前目录下建立了一个名为mytext文本文件,其内容只有一行:This is my file.当然这行文字一定是存储在磁盘数据区某个具体位置里(物理上要通过磁头号、柱面号和扇区号来描述,在本例中假设分别是1、20、30)。假设其inode是 262457,那么系统通过一段标准程序,就能将这个inode转换成存放此文件的具体物理地址(1磁头、20柱面、30扇区),最终读出文件的内容:“This is my file.”所以inode是指向一个文件数据区的指针号码,一个inode对应着系统中唯一的一片物理数据区,而位于两个不同物理数据区的文件必定分别对应着两个不同的inode号码。文件拷贝命令: #cp /home/zyd/mytext newfile 在当前工作目录建立了一个新文件newfile,其实际操作主要包括如下三步:
1、在当前目录中增加一个目录项,其文件名域填入newfile,并分配了一个新的inode,假设是262456。
2、将原文件(在1磁头、20柱面、30扇区)的内容复制了一份到新的空闲物理块(假设是1磁头、20柱面、31扇区)。
3、填写一些其他关键信息,使系统通过这些信息及inode号码可以完成物理地址的转换。所以文件复制要分配新的inode和新的数据区,虽然两个文件的内容是一样的。

一个文件系统允许的inode节点数是有限的,如果文件数量太多,即使每个文件都是0字节的空文件,系统最终也会因为节点空间耗尽而不能再创建文件。所以当发现不能建立文件时首先要考虑硬盘数据区是否还有空间(可通过du命令),其次还得检查节点空间。 Linux之所以能支持多种文件系统,其实是由于Linux提供了一个虚拟文件系统VFS,VFS作为实际文件系统的上层软件,掩盖了实际文件系统底层的具体结构差异,为系统访问位于不同文件系统的文件提供了一个统一的接口。实际上许多文件系统并不具备inode结构,其目录结构也和以上的讨论不同,但通过VFS,系统均为其提供了虚拟一致的inode和目录项结构。所以,'ls -il'命令实际显示的inode应该是VFS inode,也就是说,inode是存在于内存中的数据结构,而不一定是实际的硬盘结构。但为Linux量身定做的ext2文件系统具备实际的inode 和连接型目录项结构.有一个inode, 就可以有一个文件, fs中有多少inode,就可以有多少file. inode又有单字节和多字节之分(由文件系统的类型和单个文件的大小决定). inode在建fs时同时开出, 开多少? 这由nbpi(平均每节点管理多大文件)和fs的大小决定. fs建好后,想增加inode,只能扩fs, 而且nbpi无法改变. 反之, 每当扩fs, inode也相应增加.因此, 由于jfs能管理的inode数为16M(2的24次方), 当nbpi确定时, fs的最大值也定了.

你可能感兴趣的:(数据结构,linux,工作)