dynamic_cast 、reinterpret_cast 、 static_cast 、 const_cast

 dynamic_cast 
 dynamic_cast < type-id > ( expression )
  该运算符把expression转换成type-id类型的对象。Type-id必须是类的指针、类的引用或者void *;
  如果type-id是类指针类型,那么expression也必须是一个指针,如果type-id是一个引用,那么expression也必须是一个引用。
  dynamic_cast主要用于类层次间的上行转换和下行转换,还可以用于类之间的交叉转换。
  在类层次间进行上行转换时,dynamic_cast和 static_cast 的效果是一样的;
  在进行下行转换时,dynamic_cast具有类型检查的功能,比static_cast更安全。
  class B{
  public:
  int m_iNum;
  virtual void foo();
  };
  class D:public B{
  public:
  char *m_szName[100];
  };
  void func(B *pb){
  D *pd1 = static_cast<D *>(pb);
  D *pd2 = dynamic_cast<D *>(pb);
  }
  在上面的代码段中,如果pb指向一个D类型的对象,pd1和pd2是一样的,并且对这两个指针执行D类型的任何操作都是安全的;
  但是,如果pb指向的是一个B类型的对象,那么pd1将是一个指向该对象的指针,对它进行D类型的操作将是不安全的(如访问m_szName),
  而pd2将是一个空指针。
注意:
B要有虚函数,否则会编译出错;static_cast则没有这个限制。
  B中需要检测有虚函数的原因:类中存在虚函数,就说明它有想要让基类指针或引用指向派生类对象的情况,此时转换才有意义。
  这是由于运行时类型检查需要运行时类型信息,而这个信息存储在类的虚函数表(关于 虚函数表 的概念,详细可见<Inside c++ object model>)中,只有定义了虚函数的类才有虚函数表,
  没有定义虚函数的类是没有虚函数表的。
  另外,dynamic_cast还支持交叉转换(cross cast)。如下代码所示:
  class A{
  public:
  int m_iNum;
  virtual void f(){}
  };
  class B:public A{
  };
  class D:public A{
  };
  void foo(){
  B *pb = new B;
  pb->m_iNum = 100;
  D *pd1 = static_cast<D *>(pb); //compile error
  D *pd2 = dynamic_cast<D *>(pb); //pd2 is NULL
  delete pb;
  }
  在函数foo中,使用static_cast进行转换是不被允许的,将在编译时出错;而使用 dynamic_cast的转换则是允许的,结果是空指针。
reinterpret_cast
reinterpret_cast是C++里的强制类型转换符。
  操作符修改了操作数类型,但仅仅是重新解释了给出的对象的比特模型而没有进行二进制转换。
  例如:int *n= new int ;
  double *d=reinterpret_cast<double*> (n);
  在进行计算以后, d 包含无用值. 这是因为 reinterpret_cast 仅仅是复制 n 的比特位到 d, 没有进行必要的分析。
  因此, 需要谨慎使用 reinterpret_cast.
  == ===========================================
  ==  static_cast  .vs. reinterpret_cast
  == ================================================
  reinterpret_cast是为了映射到一个完全不同类型的意思,这个关键词在我们需要把类型映射回原有类型时用到它。我们映射到的类型仅仅是为了故弄玄虚和其他目的,这是所有映射中最危险的。(这句话是C++编程思想中的原话)
  static_cast和reinterpret_cast的区别主要在于多重继承,比如
  class A { public: int m_a; };
  class B { public: int m_b; };
  class C : public A, public B {};
  那么对于以下代码:
  C c;
  printf("%p, %p, %p\r\n", &c, reinterpret_cast<B*>(&c), static_cast <B*>(&c));
  前两个的输出值是相同的,最后一个则会在原基础上偏移4个字节,这是因为static_cast计算了父子类指针转换的偏移量,并将之转换到正确的地址,而reinterpret_cast却不会做这一层转换。
  因此, 你需要谨慎使用 reinterpret_cast.

static_cast

  用法:static_cast < type-id > ( expression )
  该运算符把expression转换为type-id类型,但没有运行时类型检查来保证转换的安全性。它主要有如下几种用法:
  ①用于类层次结构中基类(父类)和 派生类(子类)之间指针或引用的转换。
  进行上行转换(把派生类的指针或引用转换成基类表示)是安全的;
  进行下行转换(把基类指针或引用转换成派生类表示)时,由于没有动态类型检查,所以是不安全的。
  ②用于基本数据类型之间的转换,如把int转换成char,把int转换成enum。这种转换的安全性也要开发人员来保证。
  ③把空指针转换成目标类型的空指针。
  ④把任何类型的表达式转换成void类型。
  注意:static_cast不能转换掉expression的const、volitale、或者__unaligned属性。
  C++中static_cast和 reinterpret_cast的区别
   C++primer第五章里写了 编译器隐式执行任何类型转换都可由static_cast显示完成;reinterpret_cast通常为操作数的位模式提供较低层的重新解释
  1、C++中的static_cast执行非 多态的转换,用于代替C中通常的转换操作。因此,被做为隐式类型转换使用。比如:
  int i;
  float f = 166.7f;
  i = static_cast<int>(f);
  此时结果,i的值为166。
  2、C++中的reinterpret_cast主要是将数据从一种类型的转换为另一种类型。所谓“通常为操作数的位模式提供较低层的重新解释”也就是说将数据以二进制存在形式的重新解释。比如:
  int i;
  char *p = "This is a example.";
  i = reinterpret_cast<int>(p);
  此时结果,i与p的值是完全相同的。reinterpret_cast的作用是说将指针p的值以二进制(位模式)的方式被解释为整型,并赋给i,//i 也是指针,整型指针;一个明显的现象是在转换前后没有数位损失。

const_cast

  用法:const_cast<type_id> (expression)
  该运算符用来修改类型的const或volatile属性。除了const 或volatile修饰之外, type_id和expression的类型是一样的。
  一、常量指针被转化成非常量指针,并且仍然指向原来的对象;
  二、常量引用被转换成非常量引用,并且仍然指向原来的对象;
  三、常量对象被转换成非常量对象。
  Voiatile和const类试。举如下一例:
  class B
  {
  public:
  int m_iNum;
  B() {}
  };
  void foo()
  {
  const B b1;
  //b1.m_iNum = 100; //compile error
  B b2 = const_cast<B&>(b1);
  b2. m_iNum = 200; //fine?
  }
  int main()
  {
  foo();
  return 0;
  }
  上面的代码编译时会报错,因为b1是一个常量对象,不能对它进行改变;
  使用const_cast把它转换成一个非常量对象,就可以对它的数据成员任意改变。注意:b1和b2是两个不同的对象。



你可能感兴趣的:(c,object,delete,Class,float,编译器)