- 多组样例最小相似度python
寒香!
python开发语言
没有直接提供多组样例最小相似度的Python代码,但我们可以根据中提到的MinHash算法原理来设计一个简单的实现。MinHash是一种用于估计两个集合相似性的高效算法,通过计算两个集合的最小哈希值来估计它们的相似性。以下是一个基于MinHash原理的Python代码示例,用于计算两组样例之间的最小相似度:importrandomdefminhash(s):#这里简化了MinHash的实现,实际应
- 快速计算距离Annoy算法原理及Python使用
召唤师的峡谷
机器学习算法
快速计算距离Annoy算法基本原理高维稀疏数据进行快速相似查找,可以采用learningtohash参考:Minhashing&LSH&Simhash技术汇总,但高维稠密数据查找则采用annoy如何从海量文本中快速查找出相似的TopN文本Annoy(ApproximateNearestNeighborsOhYeah)快速算法,在实际应用中发现无论计算速度和准确性都非常不错。原始2D数据分布图:1.
- python调用golang中函数方法
dkgee
golang开发语言后端python
一、原因说明:由于simhash方法有多种实现方式,现python中simhash方法与golang中的不一样,需要两者代码生成结果保持一致,故采用python中的代码调用golang编译的so文件来实现。环境配置:①Windows10系统要有gcc环境,否则gobuild编译so文件不会成功。,可以下载mingw-w64进行配置,下载地址:mingw-w64Windows10系统环境%PATH%
- 海量数据相似数据查找方法(ANN):【高维稀疏向量的相似查找——MinHash, LSH, SimHash】【稠密向量的相似查找——Faiss、Annoy、ScaNN、Hnswlib】
u013250861
#RS/召回层#LLM/数据处理算法
主要分为高维稀疏向量和稠密向量两大方向。高维稀疏向量的相似查找——minhash,lsh,simhash针对高维稀疏数据情况,如何通过哈希技术进行快速进行相似查找。例如,推荐系统中item-user矩阵。如果你有item数量是百万级别,user是千万级别,这个矩阵是十分稀疏的。你如何计算每一个item的TopN相似item呢?同样海量文本场景,文本集合可以看成doc-word稀疏矩阵,如何求解每个
- simhash去重算法实践
想努力的人
算法simhash算法预处理
自己实践simhash算法的几点经验:1数据已处理,正则表达式去除各种转义符号2将文本中的数字和字母等去除3分词后去除停顿词步骤,1文本预处理代码步骤1jieba分词获取features2hash函数计算hash值3计算海明距离AxoB(两个二进制串中不同位的个数)将第一篇features建立indexobjs=[(str(0),Simhash(features))]index=SimhashIn
- 如何利用大模型结合文本语义实现文本相似度分析?
小小晓晓阳
LLM文心一言pythonnlp
常规的文本相似度计算有TF-IDF,Simhash、编辑距离等方式,但是常规的文本相似度计算方式仅仅能对文本表面相似度进行分析计算,并不能结合语义分析,而如果使用机器学习、深度学习的方式费时费力,效果也不一定能达到我们满意的状态,随着大模型技术的日渐成熟,我们是否可以利用大模型来完成文本相似度分析呢?本文将结合文心一言4.0来介绍两种文本相似度分析的方法:方式一提供prompt,直接调用大模型接口
- 【SparkML实践7】特征选择器FeatureSelector
周润发的弟弟
Spark机器学习spark-ml
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。FeatureSelectorsVectorSlicerVe
- 【Spark实践6】特征转换FeatureTransformers实践Scala版--补充算子
周润发的弟弟
Spark机器学习sparkscala大数据
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。FeatureTransformersIndexToStri
- 【SparkML实践5】特征转换FeatureTransformers实战scala版
周润发的弟弟
Spark机器学习spark-mlscala开发语言
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。本章节主要讲转换1FeatureTransformersTo
- 【SparkML系列3】特征提取器TF-IDF、Word2Vec和CountVectorizer
周润发的弟弟
spark-mltf-idfword2vec
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。###FeatureExtractors(特征提取器)###
- Vue项目 封装Element-ui中的el-pagination作为公用分页组件
小刘爱搬砖
Vuevue.jsjavascriptui
原文链接:https://www.cnblogs.com/lsh-admin/p/16071060.html原因:分页在项目当中使用非常频繁,因此就将el-pagination封装为了一个全局组件1.首先在components下面新建一个pagination.vue文件import{scrollTo}from'@/utils/scroll-to'exportdefault{name:'Pagina
- MinHashLSH使用redis存储
walk walk
python数据挖掘redispython机器学习
fromdatasketchimportMinHashfromlshimportMinHashLSHimportconfigparserdefget_minhash(item_str):item_str_arr=item_str.split('')temp=MinHash()fordinitem_str_arr:temp.update(d.upper().encode('utf8'))cp=con
- 向量数据库(1)
Aring88
人工智能向量数据库人工智能数据库python
一、向量数据库1,什么是向量数据库专门存储和查询向量数据的数据库系统,通过高翔的向量索引和查询功能,使得在大规模向量数据集上进行相似性搜索和分析变得更高效和容易。存储向量数据:处理百万或者十亿的大规模数据集向量索引:使用特殊索引结构,如KD-Tree,LSH(局部敏感哈希),HNSW(高纬空间网络)常用。加速向量的相似性搜索。能高效与查询相似的想来根相似性搜索:根据查询的向量相似来搜索、检索最相关
- Linux查询内存占用情况以及服务器内大文件
liaozk_c
日常工作总结linux运维服务器
内存占用率free-m查看硬盘空间大小df-lh显示大于100MiB(注意不是100MB,MiB和MB的区别)的所有文件find/-size+100M-ls查看根目录占用大小du-sh/*2>dev.null|sort-hr|head-3列出/bin目录中的5个最大文件ls-lSh/bin|head-5查找/目录下最大的一个文件sudofind/-typef-printf“%s\t%p\n”|so
- 局部敏感哈希LSH
囧囧侠道
LSH局部敏感哈希问题场景:快速的从海量高维数据集合中找到与某个数据最相似(距离最近)的一个数据或多个数据局部敏感:指样本越相似,经过哈希后的值越可能一样。通过建立HashTable的方式,我们期望能够获得O(1)的查找时间性能,其中的关键在于选取一个hashfunction,将原始数据映射到对应的桶内(bucket)。以下以jacarrd距离为度量(对应的哈希函数为minhash)。简要介绍LS
- Linux中经常使用的相关命令
图灵追慕者
Linuxlinux服务器复制文件删除文件移动文件
查看硬盘存储容量使用情况: df-lh 列出/bin目录中的5个最大文件:ls-lSh/bin|head-5删除文件和文件夹在Linux中,要删除文件的命令是rm。你可以使用以下命令来删除一个文件:rmfile_name如果要删除多个文件,可以在命令中列出它们的文件名,如:rmfile1file2file3你可以使用以下命令来删除一个空文件夹:rm-dfolder_name如果文件夹中有文件或其他
- 局部敏感哈希LSH(Locality-Sensitive Hashing)——海量数据相似性查找技术
飞剑客阿飞
一、前言 最近在工作中需要对海量数据进行相似性查找,即对微博全量用户进行关注相似度计算,计算得到每个用户关注相似度最高的TOP-N个用户,首先想到的是利用简单的协同过滤,先定义相似性度量(cos,Pearson,Jaccard),然后利用通过两两计算相似度,计算top-n进行筛选,这种方法的时间复杂度为(对于每个用户,都和其他任意一个用户进行了比较)但是在实际应用中,对于亿级的用户量,这个时
- 基于matlab的一维多节数组排序
行者..................
数据结构
cen=centres;%排序数组重赋值count=1;%节数计数length_a=1;%用于计算各个节数的个数fori=1:1:length(cen)-1if(abs(lsh_cen(i,1)-lsh_cen(i+1,1))cen(i+1,2))%开始排序temp=_cen(i,2);lsh_cen(i,2)=lsh_cen(i+1,2);lsh_cen(i+1,2)=temp;endelseb
- linux统计文件夹下有几个指定结尾的文件
MaoLingHao
linux运维服务器
第一种方法:ls*.sh|wc-l.sh根据你自己需要的以什么后缀结束就写什么第二种方法:ls-l|grep"sh$"|wc-lsh道理和第一种一样查看文件编码格式
- Linux上查找最大文件的3种方法
无忧杂货铺
linux基础
Linux上查找最大文件的3种方法第一种:ls最简单的方法就是借助ls命令,因为ls命令本身输出是带文件大小信息的。比如,我要列出/data/log/目录中的20个最大文件,可以:ls-lSh/data/log/|head-20第二种:findfind本身就是查找命令,可以递归查找一个目录的子目录,所以用它是自然的。比如,查找/etc目录下最大的5个文件:find/etc-typef-printf
- 大规模异常滥用检测:基于局部敏感哈希算法——来自Uber Engineering的实践
djph26741
数据结构与算法大数据数据库
uber全球用户每天会产生500万条行程,保证数据的准确性至关重要。如果所有的数据都得到有效利用,t通过元数据和聚合的数据可以快速检测平台上的滥用行为,如垃圾邮件、虚假账户和付款欺诈等。放大正确的数据信号能使检测更精确,也因此更可靠。为了解决我们和其他系统中的类似挑战,UberEngineering和Databricks共同向ApacheSpark2.1开发了局部敏感哈希(LSH)。LSH是大规模
- SpringBoot如何整合SpringMVC的拦截器、数据源、Mybatis以及配置多数据源?
废柴程序员
一、整合拦截器1.创建自定义拦截器packagecom.lsh.interceptor;importorg.springframework.stereotype.Component;importorg.springframework.web.servlet.HandlerInterceptor;importjavax.servlet.http.HttpServletRequest;importja
- fastANI的安装与使用
筱贺学生信
python开发语言
学习链接:FastANI1、fastANI简介FastANI专为全基因组平均核苷酸身份(ANI)的快速无比对计算而开发。ANI被定义为两个微生物基因组之间共享的直系同源基因对的平均核苷酸身份。FastANI支持完整基因组组装体和草图基因组组装体的成对比较。其基本过程遵循与Goris等人2007年描述的类似工作流程。但是,它避免了昂贵的序列比对,并使用Mashmap作为其基于MinHash的序列映射
- Java实现标题相似度计算,文本内容相似度匹配,Java通过SimHash计算标题文本内容相似度
Hello_World_QWP
JavaSpringBootSpringCloudJavaSprintBoot标题相似度计算SimHash海明距离
目录一、前言二、关于SimHash补充知识一)、什么是海明距离二)、海明距离的应用三)、什么是编辑距离三、SimHash算法的几何意义和原理一)、SimHash算法的几何意义二)、SimHash的计算原理三)、文本的相似度计算四、Java通过SimHash计算文本内容相似度代码示例一)、新增依赖包二)、过滤特殊字符三)、计算单个分词的Hash值四)、分词计算向量五)、获取标题内容的海明距离六)、获
- 第四章 相似度分析算法——基于MinHash的相似性算法
文颜
4.3基于MinHash的相似性算法MinHash也称为最小哈希式独立排列局部性敏感哈希,是一种非常快速的对两个不同集合进行相似性分析的方法。该算法起初主要用于在搜索引擎中的重复网页检查,现在也应用于解决大规模聚类问题。4.3.1与Jaccard相似性关系采用MinHash可以减小过程中的计算复杂度。其基本原理为有两个集合A、B,在集合A与集合B的并集中,选取的元素同时也在集合A和集合B中的概率等
- ML-文本相似度
yunpiao
局部敏感哈希(LSH)文本相识度计算文档文本相识度主要方法欧氏距离编辑距离余弦距离Jaccard距离距离越近相识度越高负比相识度公式公式文档的Shingling为了计算所以需要文档划分为小的短字符的集合即子串k-Shingling就是k个集合为一起的子串{"a,b","b,c"}k的选取视情况而定最小hash假设我们有这样4篇文档(分词后):s1="我减肥"s2="要"s3="他减肥成功"s4="
- 集成多元算法,打造高效字面文本相似度计算与匹配搜索解决方案,助力文本匹配冷启动[BM25、词向量、SimHash、Tfidf、SequenceMatcher]
汀、人工智能
tf-idf搜索推荐检索系统BM25算法SimHash词向量自然语言处理
搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术细节以及项目实战(含码源)专栏详细介绍:搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术细节以及项目实战(含码源)前人栽树后人乘凉,本专栏提供资料:推荐系统算法库,包含推荐系统经典及最新算法讲解,以及涉及后续业务落地方案和码源本专栏
- 局部敏感哈希 python实现_LSH-局部敏感哈希
weixin_39880479
局部敏感哈希python实现获取文件哈希值
一.近邻搜索局部敏感哈希,英文locality-sensetivehashing,常简称为LSH。局部敏感哈希在部分中文文献中也会被称做位置敏感哈希。LSH是一种哈希算法,最早在1998年由Indyk在上提出。不同于我们在数据结构教材中对哈希算法的认识,哈希最开始是为了减少冲突方便快速增删改查,在这里LSH恰恰相反,它利用的正式哈希冲突加速检索,并且效果极其明显。LSH主要运用到高维海量数据的快速
- linux nfs配置权限不够,nfs服务权限配置
请闭眼沉思
linuxnfs配置权限不够
jQueryIon.Calendar日期/日历在线实例实例演示默认实例演示每周第一天实例演示输入框插件实例演示HTMLdata属性实例演示回调函数1实例演示回调函数2使用方法MinHash算法MinHash是用于快速检测两个集合的相似性的方法.改方法由AndreiBroder(1997)发明,并最初用于搜索引擎AltaVista中来检测重复的网页的算法.它同样可以用于推荐系统
- LSH 复习(考试向)
nine_mink
MassiveDataAlgorithms哈希算法算法
LSHReviewOverallMinhashSignaturesBinaryMatrix(bit-vector)ConstructMinHashmatrixGeneratesimulatedpermutationsJaccardsimilaritiesTuningParametersforrNNSOverallhash就是将不同长度规则的文本转化成相同长度的字符串,用这些相同长度的字符串来表示原
- java线程的无限循环和退出
3213213333332132
java
最近想写一个游戏,然后碰到有关线程的问题,网上查了好多资料都没满足。
突然想起了前段时间看的有关线程的视频,于是信手拈来写了一个线程的代码片段。
希望帮助刚学java线程的童鞋
package thread;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date
- tomcat 容器
BlueSkator
tomcatWebservlet
Tomcat的组成部分 1、server
A Server element represents the entire Catalina servlet container. (Singleton) 2、service
service包括多个connector以及一个engine,其职责为处理由connector获得的客户请求。
3、connector
一个connector
- php递归,静态变量,匿名函数使用
dcj3sjt126com
PHP递归函数匿名函数静态变量引用传参
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
- 属性颜色字体变化
周华华
JavaScript
function changSize(className){
var diva=byId("fot")
diva.className=className;
}
</script>
<style type="text/css">
.max{
background: #900;
color:#039;
- 将properties内容放置到map中
g21121
properties
代码比较简单:
private static Map<Object, Object> map;
private static Properties p;
static {
//读取properties文件
InputStream is = XXX.class.getClassLoader().getResourceAsStream("xxx.properti
- [简单]拼接字符串
53873039oycg
字符串
工作中遇到需要从Map里面取值拼接字符串的情况,自己写了个,不是很好,欢迎提出更优雅的写法,代码如下:
import java.util.HashMap;
import java.uti
- Struts2学习
云端月影
最近开始关注struts2的新特性,从这个版本开始,Struts开始使用convention-plugin代替codebehind-plugin来实现struts的零配置。
配置文件精简了,的确是简便了开发过程,但是,我们熟悉的配置突然disappear了,真是一下很不适应。跟着潮流走吧,看看该怎样来搞定convention-plugin。
使用Convention插件,你需要将其JAR文件放
- Java新手入门的30个基本概念二
aijuans
java新手java 入门
基本概念: 1.OOP中唯一关系的是对象的接口是什么,就像计算机的销售商她不管电源内部结构是怎样的,他只关系能否给你提供电就行了,也就是只要知道can or not而不是how and why.所有的程序是由一定的属性和行为对象组成的,不同的对象的访问通过函数调用来完成,对象间所有的交流都是通过方法调用,通过对封装对象数据,很大限度上提高复用率。 2.OOP中最重要的思想是类,类是模板是蓝图,
- jedis 简单使用
antlove
javarediscachecommandjedis
jedis.RedisOperationCollection.java
package jedis;
import org.apache.log4j.Logger;
import redis.clients.jedis.Jedis;
import java.util.List;
import java.util.Map;
import java.util.Set;
pub
- PL/SQL的函数和包体的基础
百合不是茶
PL/SQL编程函数包体显示包的具体数据包
由于明天举要上课,所以刚刚将代码敲了一遍PL/SQL的函数和包体的实现(单例模式过几天好好的总结下再发出来);以便明天能更好的学习PL/SQL的循环,今天太累了,所以早点睡觉,明天继续PL/SQL总有一天我会将你永远的记载在心里,,,
函数;
函数:PL/SQL中的函数相当于java中的方法;函数有返回值
定义函数的
--输入姓名找到该姓名的年薪
create or re
- Mockito(二)--实例篇
bijian1013
持续集成mockito单元测试
学习了基本知识后,就可以实战了,Mockito的实际使用还是比较麻烦的。因为在实际使用中,最常遇到的就是需要模拟第三方类库的行为。
比如现在有一个类FTPFileTransfer,实现了向FTP传输文件的功能。这个类中使用了a
- 精通Oracle10编程SQL(7)编写控制结构
bijian1013
oracle数据库plsql
/*
*编写控制结构
*/
--条件分支语句
--简单条件判断
DECLARE
v_sal NUMBER(6,2);
BEGIN
select sal into v_sal from emp
where lower(ename)=lower('&name');
if v_sal<2000 then
update emp set
- 【Log4j二】Log4j属性文件配置详解
bit1129
log4j
如下是一个log4j.properties的配置
log4j.rootCategory=INFO, stdout , R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appe
- java集合排序笔记
白糖_
java
public class CollectionDemo implements Serializable,Comparable<CollectionDemo>{
private static final long serialVersionUID = -2958090810811192128L;
private int id;
private String nam
- java导致linux负载过高的定位方法
ronin47
定位java进程ID
可以使用top或ps -ef |grep java
![图片描述][1]
根据进程ID找到最消耗资源的java pid
比如第一步找到的进程ID为5431
执行
top -p 5431 -H
![图片描述][2]
打印java栈信息
$ jstack -l 5431 > 5431.log
在栈信息中定位具体问题
将消耗资源的Java PID转
- 给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数
bylijinnan
函数
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class RandNFromRand5 {
/**
题目:给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数。
解法1:
f(k) = (x0-1)*5^0+(x1-
- PL/SQL Developer保存布局
Kai_Ge
近日由于项目需要,数据库从DB2迁移到ORCAL,因此数据库连接客户端选择了PL/SQL Developer。由于软件运用不熟悉,造成了很多麻烦,最主要的就是进入后,左边列表有很多选项,自己删除了一些选项卡,布局很满意了,下次进入后又恢复了以前的布局,很是苦恼。在众多PL/SQL Developer使用技巧中找到如下这段:
&n
- [未来战士计划]超能查派[剧透,慎入]
comsci
计划
非常好看,超能查派,这部电影......为我们这些热爱人工智能的工程技术人员提供一些参考意见和思想........
虽然电影里面的人物形象不是非常的可爱....但是非常的贴近现实生活....
&nbs
- Google Map API V2
dai_lm
google map
以后如果要开发包含google map的程序就更麻烦咯
http://www.cnblogs.com/mengdd/archive/2013/01/01/2841390.html
找到篇不错的文章,大家可以参考一下
http://blog.sina.com.cn/s/blog_c2839d410101jahv.html
1. 创建Android工程
由于v2的key需要G
- java数据计算层的几种解决方法2
datamachine
javasql集算器
2、SQL
SQL/SP/JDBC在这里属于一类,这是老牌的数据计算层,性能和灵活性是它的优势。但随着新情况的不断出现,单纯用SQL已经难以满足需求,比如: JAVA开发规模的扩大,数据量的剧增,复杂计算问题的涌现。虽然SQL得高分的指标不多,但都是权重最高的。
成熟度:5星。最成熟的。
- Linux下Telnet的安装与运行
dcj3sjt126com
linuxtelnet
Linux下Telnet的安装与运行 linux默认是使用SSH服务的 而不安装telnet服务 如果要使用telnet 就必须先安装相应的软件包 即使安装了软件包 默认的设置telnet 服务也是不运行的 需要手工进行设置 如果是redhat9,则在第三张光盘中找到 telnet-server-0.17-25.i386.rpm
- PHP中钩子函数的实现与认识
dcj3sjt126com
PHP
假如有这么一段程序:
function fun(){
fun1();
fun2();
}
首先程序执行完fun1()之后执行fun2()然后fun()结束。
但是,假如我们想对函数做一些变化。比如说,fun是一个解析函数,我们希望后期可以提供丰富的解析函数,而究竟用哪个函数解析,我们希望在配置文件中配置。这个时候就可以发挥钩子的力量了。
我们可以在fu
- EOS中的WorkSpace密码修改
蕃薯耀
修改WorkSpace密码
EOS中BPS的WorkSpace密码修改
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--SpringSecurity相关配置【SpringSecurityConfig】
hanqunfeng
SpringSecurity
SpringSecurity的配置相对来说有些复杂,如果是完整的bean配置,则需要配置大量的bean,所以xml配置时使用了命名空间来简化配置,同样,spring为我们提供了一个抽象类WebSecurityConfigurerAdapter和一个注解@EnableWebMvcSecurity,达到同样减少bean配置的目的,如下:
applicationContex
- ie 9 kendo ui中ajax跨域的问题
jackyrong
AJAX跨域
这两天遇到个问题,kendo ui的datagrid,根据json去读取数据,然后前端通过kendo ui的datagrid去渲染,但很奇怪的是,在ie 10,ie 11,chrome,firefox等浏览器中,同样的程序,
浏览起来是没问题的,但把应用放到公网上的一台服务器,
却发现如下情况:
1) ie 9下,不能出现任何数据,但用IE 9浏览器浏览本机的应用,却没任何问题
- 不要让别人笑你不能成为程序员
lampcy
编程程序员
在经历六个月的编程集训之后,我刚刚完成了我的第一次一对一的编码评估。但是事情并没有如我所想的那般顺利。
说实话,我感觉我的脑细胞像被轰炸过一样。
手慢慢地离开键盘,心里很压抑。不禁默默祈祷:一切都会进展顺利的,对吧?至少有些地方我的回答应该是没有遗漏的,是不是?
难道我选择编程真的是一个巨大的错误吗——我真的永远也成不了程序员吗?
我需要一点点安慰。在自我怀疑,不安全感和脆弱等等像龙卷风一
- 马皇后的贤德
nannan408
马皇后不怕朱元璋的坏脾气,并敢理直气壮地吹耳边风。众所周知,朱元璋不喜欢女人干政,他认为“后妃虽母仪天下,然不可使干政事”,因为“宠之太过,则骄恣犯分,上下失序”,因此还特地命人纂述《女诫》,以示警诫。但马皇后是个例外。
有一次,马皇后问朱元璋道:“如今天下老百姓安居乐业了吗?”朱元璋不高兴地回答:“这不是你应该问的。”马皇后振振有词地回敬道:“陛下是天下之父,
- 选择某个属性值最大的那条记录(不仅仅包含指定属性,而是想要什么属性都可以)
Rainbow702
sqlgroup by最大值max最大的那条记录
好久好久不写SQL了,技能退化严重啊!!!
直入主题:
比如我有一张表,file_info,
它有两个属性(但实际不只,我这里只是作说明用):
file_code, file_version
同一个code可能对应多个version
现在,我想针对每一个code,取得它相关的记录中,version 值 最大的那条记录,
SQL如下:
select
*
- VBScript脚本语言
tntxia
VBScript
VBScript 是基于VB的脚本语言。主要用于Asp和Excel的编程。
VB家族语言简介
Visual Basic 6.0
源于BASIC语言。
由微软公司开发的包含协助开发环境的事
- java中枚举类型的使用
xiao1zhao2
javaenum枚举1.5新特性
枚举类型是j2se在1.5引入的新的类型,通过关键字enum来定义,常用来存储一些常量.
1.定义一个简单的枚举类型
public enum Sex {
MAN,
WOMAN
}
枚举类型本质是类,编译此段代码会生成.class文件.通过Sex.MAN来访问Sex中的成员,其返回值是Sex类型.
2.常用方法
静态的values()方