ZOJ3435 Ideal Puzzle Bobble

mobius反演的入门题。

首先,先抄一遍mobius反演:

已知 f(n) = sigma(d|n, g(d))

那么 g(n) = sigma(d|n, mu(d)*f(n/d))


mobius反演的另一种形式:

在某一范围内,已知 f(n) = sigma(n|d, g(d))

那么 g(n) = sigma(n|d, mu(d/n)*f(d))


本题的难度其实就入门来说比较大,推荐先做一下

POJ 3090, HDU1695, SPOJ VLATTICE

掌握本题之后,再去做更难一点的SPOJ PGCD




进入正题:

本题题意为求从(1,1,1)到(L,W,H)这个三维空间中的所有从(1,1,1)能看到的点,

换言之,求(0,0,0)到(L-1,W-1,H-1)的空间中所有(i,j,k)=1的点。


令 g(n) 为 (i,j,k) = n 的可见点的个数

f(n) 为 (i,j,k) | n 的可见点的个数

显然,我们可以得到  f(n) = sigma(n|d, g(d))

经过mobius反演后,可以推出 g(n) = sigma(n|d, mu(d/n)*f(d))

令 n = 1 ,则有g(1) = sigma(1|d, mu(d)*f(d)) 即本题要求的答案


函数f是可以直接计算的:

f(d) = (L/d) * (W/d) * (H/d)

所以g(1) = sigma(mu(d) * (L/d) * (W/d) * (H/d))


又因为本题是三维的情形,当需要统计的可见点在与(0,0,0)同一xy或xz或yz,将退化成二维情形,

故 ans = sigma(mu(d) * (L/d) * (W/d) * (H/d) + mu(d) * (L/d) * (W/d) + mu(d) * (L/d) * (H/d) + mu(d) * (H/d) * (W/d) )

= sigma(mu(d) * ( (L/d+1) * (W/d+1) * (H/d+1) - 1) )


再然后,本题是多case的卡时间,卡的特别狠!

除了预处理的时间之外,主程序中的时间复杂度即使是O(n)也过不了= =

于是只能继续优化了 = =


我们可以注意到 (n/d) 当d在某一连续的范围内时,值是不会变化的。

例如 (10/4) 和 (10/5) 就是一样的,(10/6) 到 (10/10) 都是一样的。

所以,我们可以预处理出前n项的mobius函数之和,然后就可以在O(1)的时间统计出这个区间内的mobius函数之和,再直接乘以这个区间任何一个 f 函数值就行了。

这样主程序的时间复杂度就会到O(sqrt(n))    (没错吧= =,好像是快一点点了= =)


至此,所有难点都已攻克。



怒贴代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

typedef long long ll;
const int maxn = 1000001;
int l,w,h;
bool notprime[maxn];
int prime[maxn],nprime;
int mu[maxn],sum[maxn];
ll ans;

void getmu()
{
    nprime=0;
    mu[1]=1;
    for (int i=2;i<maxn;i++)
    {
        if (!notprime[i]) {prime[nprime++]=i; mu[i]=-1;}
        for (int j=0;j<nprime&&i*prime[j]<maxn;j++)
        {
            notprime[i*prime[j]]=1;
            if (i%prime[j]) mu[i*prime[j]]=-mu[i];
            else {mu[i*prime[j]]=0; break;}
        }
    }
    sum[0]=0;
    for (int i=1;i<maxn;i++) sum[i]=sum[i-1]+mu[i];
}

int main()
{
    getmu();
    while (scanf("%d%d%d",&l,&w,&h)==3)
    {
        l--; w--; h--;
        ans=0;
        for (int i=1,cur;i<=l||i<=w||i<=h;i=cur+1)
        {
            cur = 1000000;
            if (i<=l) cur=min(cur, l/(l/i));
            if (i<=w) cur=min(cur, w/(w/i));
            if (i<=h) cur=min(cur, h/(h/i));
            ll a=l/cur+1, b=w/cur+1, c=h/cur+1;
            ans+=(sum[cur]-sum[i-1])*(a*b*c-1);
        }
        printf("%lld\n",ans);
    }
}


你可能感兴趣的:(ZOJ3435 Ideal Puzzle Bobble)