来自:http://blog.chinaunix.net/u/24981/showart_185841.html
注:我主要想看看上层读数据的时候,等待队列是怎么做的:)
Spac5xx 的实现是按照标准的 USB VIDEO 设备的驱动框架编写(其具体的驱动框架可参照 /usr/src/linux/drivers/usb/usbvideo.c 文件),整个源程序由四个主体部分组成:设备模块的初始化模块和卸载模块,上层软件接口模块,数据传输模块。具体的模块分析如下:
一. 初始化设备模块:
该驱动采用了显式的模块初始化和消除函数,即调用 module_init 来初始化一个模块,并在卸载时调用 moduel-exit 函数(此二函数在 2.3.13 内核开始支持)。其具体实现如下:
1 .模块初始化:
module_init (usb_spca5xx_init);
static int __init
usb_spca5xx_init (void)
{
#ifdef CONFIG_PROC_FS
proc_spca50x_create (); // 建立 PROC 设备文件
#endif /* CONFIG_PROC_FS */
if (usb_register (&spca5xx_driver) < 0) // 注册 USB 设备驱动
return -1;
info ("spca5xx driver %s registered", version);
return 0;
}
2 .模块卸载:
module_exit (usb_spca5xx_exit);
tatic void __exit
usb_spca5xx_exit (void)
{
usb_deregister (&spca5xx_driver); // 注销 USB 设备驱动
info ("driver spca5xx deregistered");
#ifdef CONFIG_PROC_FS
proc_spca50x_destroy (); // 撤消 PROC 设备文件
#endif /* CONFIG_PROC_FS */
}
关键数据结构: //USB 驱动结构,即插即用功能的实现
static struct usb_driver spca5xx_driver = {
"spca5xx",
spca5xx_probe, // 注册设备自我侦测功能
spca5xx_disconnect, // 注册设备自我断开功能
{NULL,NULL}
};
用两个函数调用 spca5xx_probe 和 spca5xx_disconnect 来支持 USB 设备的即插即用功能:
spca5xx_probe 具体实现如下:
static void *
spca5xx_probe (struct usb_device *dev, unsigned int ifnum, const struct usb_device_id *id)
{
struct usb_interface_descriptor *interface; //USB 设备接口描述符
struct usb_spca50x *spca50x; // 物理设备数据结构
int err_probe;
int i;
if (dev->descriptor.bNumConfigurations != 1) // 探测设备是不是可配置
goto nodevice;
if (ifnum > 0)
goto nodevice;
interface = &dev->actconfig->interface[ifnum].altsetting[0];
MOD_INC_USE_COUNT;
interface = &intf->altsetting[0].desc;
if (interface->bInterfaceNumber > 0)
goto nodevice;
if ((spca50x = kmalloc (sizeof (struct usb_spca50x), GFP_KERNEL)) == NULL)
// 分配物理地址空间
{
err ("couldn't kmalloc spca50x struct");
goto error;
}
memset (spca50x, 0, sizeof (struct usb_spca50x));
spca50x->dev = dev;
spca50x->iface = interface->bInterfaceNumber;
if ((err_probe = spcaDetectCamera (spca50x)) < 0)
// 具体物理设备查找,匹配厂商号,设备号(在子程序中)
{
err (" Devices not found !! ");
goto error;
}
PDEBUG (0, "Camera type %s ", Plist[spca50x->cameratype].name
for (i = 0; i < SPCA50X_NUMFRAMES; i++)
init_waitqueue_head (&spca50x->frame[i].wq); // 初始化帧等待队列
init_waitqueue_head (&spca50x->wq); // 初始化驱动等待队列
if (!spca50x_configure (spca50x))
// 物理设备配置(主要完成传感器侦测和图形参数配置),主要思想是给控制寄存器写值,读回其返回值,以此判断具体的传感器型号
{
spca50x->user = 0;
init_MUTEX (&spca50x->lock); // 信号量初始化
init_MUTEX (&spca50x->buf_lock);
spca50x->v4l_lock = SPIN_LOCK_UNLOCKED;
spca50x->buf_state = BUF_NOT_ALLOCATED;
}
else
{
err ("Failed to configure camera");
goto error;
}
/* Init video stuff */
spca50x->vdev = video_device_alloc (); // 设备控制块内存分配
if (!spca50x->vdev)
goto error;
memcpy (spca50x->vdev, &spca50x_template, sizeof (spca50x_template));
// 系统调用的挂接,在此将驱动实现的系统调用,挂到内核中
video_set_drvdata (spca50x->vdev, spca50x);
if (video_register_device (spca50x->vdev, VFL_TYPE_GRABBER, video_nr) < 0)
{ //video 设备注册
err ("video_register_device failed");
goto error;
}
spca50x->present = 1;
if (spca50x->force_rgb)
info ("data format set to RGB");
spca50x->task.sync = 0;
spca50x->task.routine = auto_bh;
spca50x->task.data = spca50x;
spca50x->bh_requested = 0;
MOD_DEC_USE_COUNT; // 增加模块使用数
return spca50x; // 返回数据结构
error: // 错误处理
if (spca50x->vdev)
{
if (spca50x->vdev->minor == -1)
video_device_release (spca50x->vdev);
else
video_unregister_device (spca50x->vdev);
spca50x->vdev = NULL;
}
if (spca50x)
{
kfree (spca50x);
spca50x = NULL;
}
MOD_DEC_USE_COUNT;
return NULL;
nodevice:
return NULL;
}
Spca5xx_disconnect 的具体实现如下:
static void
spca5xx_disconnect (struct usb_device *dev, void *ptr)
{
struct usb_spca50x *spca50x = (struct usb_spca50x *) ptr;
int n;
MOD_INC_USE_COUNT; // 增加模块使用数
if (!spca50x)
return;
down (&spca50x->lock); // 减少信号量
spca50x->present = 0; // 驱动卸载置 0
for (n = 0; n < SPCA50X_NUMFRAMES; n++) // 标示所有帧 ABORTING 状态
spca50x->frame[n].grabstate = FRAME_ABORTING;
spca50x->curframe = -1;
for (n = 0; n < SPCA50X_NUMFRAMES; n++) // 唤醒所有等待进程
if (waitqueue_active (&spca50x->frame[n].wq))
wake_up_interruptible (&spca50x->frame[n].wq);
if (waitqueue_active (&spca50x->wq))
wake_up_interruptible (&spca50x->wq);
spca5xx_kill_isoc(spca50x); // 子函数终止 URB 包的传输
PDEBUG (3,"Disconnect Kill isoc done");
up (&spca50x->lock); // 增加信号量
while(spca50x->user) // 如果还有进程在使用,进程切换
schedule();
down (&spca50x->lock);
if (spca50x->vdev)
video_unregister_device (spca50x->vdev); // 注销 video 设备
usb_driver_release_interface (&spca5xx_driver, // 端口释放
&spca50x->dev->actconfig->
interface[spca50x->iface]);
spca50x->dev = NULL;
up (&spca50x->lock);
#ifdef CONFIG_PROC_FS
destroy_proc_spca50x_cam (spca50x); // 注销 PROC 文件
#endif /* CONFIG_PROC_FS */
if (spca50x && !spca50x->user) // 释放内存空间
{
spca5xx_dealloc (spca50x);
kfree (spca50x);
spca50x = NULL;
}
MOD_DEC_USE_COUNT; // 减少模块记数
PDEBUG (3, "Disconnect complete");
}
二. 上层软件接口模块:
该模块通过 file_operations 数据结构,依据 V4L 协议规范,实现设备的关键系统调用,实现设备文件化的 UNIX 系统设计特点。作为摄相头驱动,其功能在于数据采集,而没有向摄相头输出的功能,因此在源码中没有实现 write 系统调用。其关键的数据结构如下:
static struct video_device spca50x_template = {
.owner = THIS_MODULE,
.name = "SPCA5XX USB Camera",
.type = VID_TYPE_CAPTURE,
.hardware = VID_HARDWARE_SPCA5XX,
.fops = &spca5xx_fops,
} ;
static struct file_operations spca5xx_fops = {
.owner = THIS_MODULE,
.open = spca5xx_open, //open 功能
.release = spca5xx_close, //close 功能
.read = spca5xx_read, //read 功能
.mmap = spca5xx_mmap, // 内存映射功能
.ioctl = spca5xx_ioctl, // 文件信息获取
.llseek = no_llseek, // 文件定位功能未实现
};
1. Open 功能:
完成设备的打开和初始化,并初始化解码器模块。其具体实现如下:
static int
spca5xx_open(struct video_device *vdev, int flags)
{
struct usb_spca50x *spca50x = video_get_drvdata (vdev);
int err;
MOD_INC_USE_COUNT; // 增加模块记数
down (&spca50x->lock);
err = -ENODEV;
if (!spca50x->present) // 检查设备是不是存在,有不有驱动,是不是忙
goto out;
err = -EBUSY;
if (spca50x->user)
goto out;
err = -ENOMEM;
if (spca50x_alloc (spca50x))
goto out;
err = spca50x_init_source (spca50x); // 初始化传感器和解码模块 , 在此函数的实现中,对每一款 DSP 芯片的初始化都不一样,对中星微 301P 的 DSP 芯片的初始化在子函数 zc3xx_init ,其实现方法为寄存器填值。
if (err != 0){
PDEBUG (0, "DEALLOC error on spca50x_init_source/n");
up (&spca50x->lock);
spca5xx_dealloc (spca50x);
goto out2;
}
spca5xx_initDecoder(spca50x); // 解码模块初始化,其模块的具体实现采用的是 huffman 算法
spca5xx_setFrameDecoder(spca50x);
spca50x->user++;
err = spca50x_init_isoc (spca50x); // 初始化 URB( usb request block) 包,启动摄相头,采用同步传输的方式传送数据
if (err)
{
PDEBUG (0, " DEALLOC error on init_Isoc/n");
spca50x->user--;
spca5xx_kill_isoc (spca50x);
up (&spca50x->lock);
spca5xx_dealloc (spca50x);
goto out2;
}
spca50x->brightness = spca50x_get_brghtness (spca50x) << 8;
spca50x->whiteness = 0;
out:
up (&spca50x->lock);
out2:
if (err)
MOD_DEC_USE_COUNT;
if (err)
{
PDEBUG (2, "Open failed");
}
else
{
PDEBUG (2, "Open done");
}
return err;
}
2.Close 功能:
完成设备的关闭,其具体过程是:
static void
spca5xx_close( struct video_device *vdev)
{
struct usb_spca50x *spca50x =vdev->priv;
int i;
PDEBUG (2, "spca50x_close");
down (&spca50x->lock); // 参数设置
spca50x->user--;
spca50x->curframe = -1;
if (spca50x->present) //present :是或有驱动加载
{
spca50x_stop_isoc (spca50x); // 停止摄相头工作和数据包发送
spcaCameraShutDown (spca50x); // 关闭摄相头,由子函数 spca50x_stop_isoc 完成
for (i = 0; i < SPCA50X_NUMFRAMES; i++) // 唤醒所有等待进程
{
if (waitqueue_active (&spca50x->frame[i].wq))
wake_up_interruptible (&spca50x->frame[i].wq);
}
if (waitqueue_active (&spca50x->wq))
wake_up_interruptible (&spca50x->wq);
}
up (&spca50x->lock);
spca5xx_dealloc (spca50x); // 回收内存空间
PDEBUG(2,"Release ressources done");
MOD_DEC_USE_COUNT;
}
2. Read 功能 :
完成数据的读取,其主要的工作就是将数据由内核空间传送到进程用户空间。
static long
spca5xx_read(struct video_device *dev, char * buf, unsigned long
count,int noblock)
{
struct usb_spca50x *spca50x = video_get_drvdata (dev);
int i;
int frmx = -1;
int rc;
volatile struct spca50x_frame *frame;
if (down_interruptible(&spca50x->lock)) // 获取信号量
return -EINTR;
if (!dev || !buf){ // 判断设备情况
up(&spca50x->lock);
return -EFAULT;
}
if (!spca50x->dev){
up(&spca50x->lock);
return -EIO;
}
if (!spca50x->streaming){
up(&spca50x->lock);
return -EIO;
}
if((rc = wait_event_interruptible(spca50x->wq, // 在指定的队列上睡眠,直到参数 2 的条件为真
spca50x->frame[0].grabstate == FRAME_DONE ||
spca50x->frame[1].grabstate == FRAME_DONE ||
spca50x->frame[2].grabstate == FRAME_DONE ||
spca50x->frame[3].grabstate == FRAME_DONE ))){
up(&spca50x->lock);
return rc;
}
for (i = 0; i < SPCA50X_NUMFRAMES; i++) // 当数据到来
if (spca50x->frame[i].grabstate == FRAME_DONE) // 标识数据已到
frmx = i;
if (frmx < 0)
{
PDEBUG (2, "Couldnt find a frame ready to be read.");
up(&spca50x->lock);
return -EFAULT;
}
frame = &spca50x->frame[frmx];
PDEBUG (2, "count asked: %d available: %d", (int) count,
(int) frame->scanlength);
if (count > frame->scanlength)
count = frame->scanlength;
if ((i = copy_to_user (buf, frame->data, count))) // 实现用户空间和内核空间的数据拷贝
{
PDEBUG (2, "Copy failed! %d bytes not copied", i);
up(&spca50x->lock);
return -EFAULT;
}
/* Release the frame */
frame->grabstate = FRAME_READY; // 标识数据已空
up(&spca50x->lock);
return count; // 返回拷贝的数据数
}
3. Mmap 功能 :
实现将设备内存映射到用户进程的地址空间的功能,其关键函数是 remap_page_range ,其具体实现如下:
static int
spca5xx_mmap(struct video_device *dev,const char *adr, unsigned long size)
{
unsigned long start=(unsigned long) adr;
struct usb_spca50x *spca50x = dev->priv;
unsigned long page, pos;
if (spca50x->dev == NULL)
return -EIO;
PDEBUG (4, "mmap: %ld (%lX) bytes", size, size);
if (size >
(((SPCA50X_NUMFRAMES * MAX_DATA_SIZE) + PAGE_SIZE - 1) & ~(PAGE_SIZE -1)))
return -EINVAL;
if (down_interruptible(&spca50x->lock)) // 获取信号量
return -EINTR;
pos = (unsigned long) spca50x->fbuf;
while (size > 0) // 循环实现内存映射
{
page = kvirt_to_pa (pos);
if (remap_page_range (start, page, PAGE_SIZE, PAGE_SHARED)){ // 实现内存映射
up(&spca50x->lock);
return -EAGAIN; }
start += PAGE_SIZE;
pos += PAGE_SIZE;
if (size > PAGE_SIZE)
size -= PAGE_SIZE;
else
size = 0;
}
up(&spca50x->lock); // 释放信号量
return 0;
}
4. Ioctl 功能:
实现文件信息的获取功能,
static int
spca5xx_ioctl (struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
struct video_device *vdev = file->private_data;
struct usb_spca50x *spca50x = vdev->priv;
int rc;
if (down_interruptible(&spca50x->lock)) // 获取信号量
return -EINTR;
rc = video_usercopy (inode, file, cmd, arg, spca5xx_do_ioctl); // 将信息传送到用户进程,其关键函数实现 spca5xx_do_ioctl
up(&spca50x->lock);
return rc;
}
spca5xx_do_ioctl 函数的实现依赖于不同的硬件,本驱动为了支持多种芯片,实现程序过于烦琐,其主要思想是通过 copy_to_user(arg,b,sizeof(struct video_capability) 函数将设备信息传递给用户进程。
三. 数据传输模块:
源程序采用 tasklet 来实现同步快速传递数据,并通过 spcadecode.c 上的软件解码模块实现图形信息的解码。此模块的入口点挂节在 spca_open 函数中,其具体的函数为 spca50x_init_isoc 。当设备被打开时,同步传输数据也已经开始,并通过 spca50x_move_data 函数将数据传递给驱动程序,驱动程序通过轮询的办法实现对数据的访问。
void
outpict_do_tasklet (unsigned long ptr)
{
int err;
struct spca50x_frame *taskletframe = (struct spca50x_frame *) ptr;
taskletframe->scanlength = taskletframe->highwater - taskletframe->data;
PDEBUG (2, "Tasklet ask spcadecoder hdrwidth %d hdrheight %d method %d",
taskletframe->hdrwidth, taskletframe->hdrheight,
taskletframe->method);
err = spca50x_outpicture (taskletframe); // 输出处理过的图片数据
if (err != 0)
{
PDEBUG (0, "frame decoder failed (%d)", err);
taskletframe->grabstate = FRAME_ERROR;
}
else
{
taskletframe->grabstate = FRAME_DONE;
}
if (waitqueue_active (&taskletframe->wq)) // 如果有进程等待,唤醒等待进程
wake_up_interruptible (&taskletframe->wq);
}
值得一提的是 spcadecode.c 上解码模块将原始压缩图形数据流 yyuyv , yuvy , jpeg411 , jpeg422 解码为 RGB 图形,但此部分解压缩算法的实现也依赖于压缩的格式,归根结底依赖于 DSP (数字处理芯片)中的硬件压缩算法。
四. USB CORE 的支持:
LINUX 下的 USB 设备对下层硬件的操作依靠系统实现的 USB CORE 层, USB CORE 对上层驱动提供了众多函数接口如: usb_control_msg , usb_sndctrlpipe 等,其中最典型的使用为源码中对 USB 端点寄存器的读写函数 spca50x_reg_write 和 spca50x_reg_read 等,具体实现如下:(举 spca50x_reg_write 的实现,其他类似)
static int spca50x_reg_write(struct usb_device *dev,__u16 reg , __u16 index,
__u16 value)
{
int rc;
rc = usb_control_msg(dev, // 通过 USB CORE 提供的接口函数设置寄存器的值
usb_sndctrlpipe(dev, 0),
reg,
USB_TYPE_VENDOR | USB_RECIP_DEVICE,
value, index, NULL, 0, TimeOut);
PDEBUG(5, "reg write: 0x%02X,0x%02X:0x%02X, 0x%x", reg, index, value, rc);
if (rc < 0)
err("reg write: error %d", rc);
return rc;
}
以上为驱动程序的具体框架说明,以及其中的关键数据结构和函数说明。