本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/43416613
Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7
might become 4 5 6 7 0 1 2
).
Find the minimum element.
You may assume no duplicate exists in the array.
思路:
(1)题意为给定一个已经排好序的整形数组,数组的前m(m>0)个元素被移到数组的后面形成新的数组,求新数组中的最小元素。
(2)该题考查的是数组遍历问题。该题同样比较简单,解法一属于“简单暴力”型,直接使用类库中的方法进行排序,取得最小元素(下方算法附有Arrays.sort()中的排序算法实现,感兴趣可以看看,感觉写的好复杂);解法二属于“一般解法”,通过从前、从后遍历求得最小值,从后往前的效率要高于从前往后;解法三应该是属于"高效性",不过这里尚未给出实现,猜测的思路是通过类似“二分查找”的方式来寻求最小值,感兴趣的可以研究下。
(3)希望本文对你有所帮助。
算法代码实现如下:
/** * @author liqq * 解法一:简单暴力 */ public int findMin(int[] num) { if (num == null || num.length == 0) return 0; Arrays.sort(num); return num[0]; }
/** * * @author liqq 附加Arrays.sort() 源码 以供参考 */ public int findMin(int[] num) { if (num == null || num.length == 0) return 0; sort(num, 0, num.length); return num[0]; } private static void sort(int x[], int off, int len) { // Insertion sort on smallest arrays if (len < 7) { for (int i = off; i < len + off; i++) for (int j = i; j > off && x[j - 1] > x[j]; j--) swap(x, j, j - 1); return; } // Choose a partition element, v int m = off + (len >> 1); // Small arrays, middle element if (len > 7) { int l = off; int n = off + len - 1; if (len > 40) { // Big arrays, pseudomedian of 9 int s = len / 8; l = med3(x, l, l + s, l + 2 * s); m = med3(x, m - s, m, m + s); n = med3(x, n - 2 * s, n - s, n); } m = med3(x, l, m, n); // Mid-size, med of 3 } int v = x[m]; // Establish Invariant: v* (<v)* (>v)* v* int a = off, b = a, c = off + len - 1, d = c; while (true) { while (b <= c && x[b] <= v) { if (x[b] == v) swap(x, a++, b); b++; } while (c >= b && x[c] >= v) { if (x[c] == v) swap(x, c, d--); c--; } if (b > c) break; swap(x, b++, c--); } // Swap partition elements back to middle int s, n = off + len; s = Math.min(a - off, b - a); vecswap(x, off, b - s, s); s = Math.min(d - c, n - d - 1); vecswap(x, b, n - s, s); // Recursively sort non-partition-elements if ((s = b - a) > 1) sort(x, off, s); if ((s = d - c) > 1) sort(x, n - s, s); } private static void swap(int x[], int a, int b) { int t = x[a]; x[a] = x[b]; x[b] = t; } private static int med3(int x[], int a, int b, int c) { return (x[a] < x[b] ? (x[b] < x[c] ? b : x[a] < x[c] ? c : a) : (x[b] > x[c] ? b : x[a] > x[c] ? c : a)); } private static void vecswap(int x[], int a, int b, int n) { for (int i = 0; i < n; i++, a++, b++) swap(x, a, b); }
/** * @author liqq * 解法二 分别从前、从后遍历 从后遍历效率稍微高一些 */ public int findMinFromHead(int[] num) { if (num == null || num.length == 0) return 0; int len = num.length; int leftHalfMin = num[0]; for (int i = 1; i < len; i++) { if (leftHalfMin >= num[i]) { leftHalfMin = num[i]; } } return leftHalfMin; } public int findMinFromEnd(int[] num) { if (num == null || num.length == 0) return 0; if (num.length == 1) return num[0]; int len = num.length; int min = num[len - 1]; for (int i = len - 2; i >= 0; i--) { if (min <= num[i]) { return min; } else { min = num[i]; if (i == 0) { return min; } } } return -1; }