最接近点对问题的提法是:给定平面上n个点,找其中的一对点,使得在n个点的所有点对中,该点对的距离最小。
严格地说,最接近点对可能多于1对。为了简单起见,这里只限于找其中的一对。
代码如下:
#include <iostream> #include <fstream> #include <math.h> using namespace std; ifstream fin("in.txt"); struct point { int x; int y; }*p; void sort(point *p,int n) { point t; for(int i=1;i<n;i++) { t = p[i]; for(int j=i-1;j>=0;j--) { if(t.x < p[j].x) p[j+1]=p[j]; else break; } p[j+1]=t; } } double Distance(int i,int j) { return sqrt((p[j].x-p[i].x)*(p[j].x-p[i].x)+(p[j].y-p[i].y)*(p[j].y-p[i].y)); } double Closest(int begin,int end,int &one,int &two) { if(end-begin==1) //两个点的情况 { one = begin; two = begin+1; return Distance(begin,end); } double min,dist; if(end-begin==2) //三个点的情况 { min = Distance(begin,begin+1); one = begin; two = begin+1; dist = Distance(begin,end); if(min>dist){min=dist;two = end;} dist = Distance(begin+1,end); if(min>dist){min=dist;one = begin+1;} return min; } int mid = (begin+end)/2; //多余三个点 分治法求解 dist = Closest(begin,mid,one,two); int three=0,four=0; double dist2 = Closest(mid,end,three,four); if(dist<dist2) //对结果合并处理 {min = dist;} else{ min = dist2; one = three; two = four; } int i,j,num; double xia,shang; //关键部分! xia = p[mid].x-min; for(i=mid;i>=0;i--) { if(p[i].x<xia)break; num = mid+6 < end ? mid+6:end; shang = p[i].y+min; for(j=mid+1;j<num;j++) { if(p[j].x-p[i].x > min)break; if(p[j].y > shang)continue; dist = Distance(i,j); if(min>dist) { min=dist; one = i; two = j; } } } return min; } int main() { int n; fin>>n; p= (point *)malloc(sizeof(point)*n); int i; for(i=0;i<n;i++) { fin>>p[i].x>>p[i].y; } sort(p,n); for(i=0;i<n;i++) cout<<p[i].x<<" "; cout<<endl; int one=0,two=0; cout<<"The closest distance is "<<Closest(0,n,one,two)<<endl; cout<<"<"<<p[one].x<<","<<p[one].y<<">"<<endl; cout<<"<"<<p[two].x<<","<<p[two].y<<">"<<endl; return 0; }
10
43 67
99 35
81 36
64 78
45 65
71 94
24 61
21 34
5 29
31 51