//
3348 Accepted 264K 0MS C++ 4016B
// 典型的凸包和计算多边形面积
#include < stdio.h >
#include < stdlib.h >
#include < string .h >
#include < ctype.h >
#include < math.h >
#include < iostream >
using namespace std ;
#define unllong unsigned long long
#define unint unsigned int
#define printline printf( "\n" )
typedef long long llong ;
// const double PI = 2.0 * acos( 0.0 ) ;
#define zero(x) (((x)>0?(x):-(x))<eps)
const int Base = 1000000000 ; // 高精度
const int Capacity = 100 ; // 高精度
const double eps = 1e - 8 ;
const int INF = 1000000 ;
const int size = 10010 ;
struct POINT
{
double x ;
double y ;
double k ;
};
struct POINT point[size] ;
int stack[size] ;
int top = 2 ;
int inn ;
double outarea ;
double fdist( double x1, double y1, double x2, double y2 )
{
return sqrt( (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) ) ;
}
void input()
{
int leftdown = 0 ;
for ( int i = 0 ; i < inn; i ++ ) {
scanf( " %lf %lf " , & point[i].x, & point[i].y ) ;
// if( miny>point[i].y || miny==point[i].y&&minx>point[i].x )
if ( point[leftdown].y > point[i].y || zero(point[leftdown].y - point[i].y) && point[leftdown].x > point[i].x )
leftdown = i ; // 找到最左下的点
}
double temp ;
temp = point[ 0 ].x ; point[ 0 ].x = point[leftdown].x ; point[leftdown].x = temp ;
temp = point[ 0 ].y ; point[ 0 ].y = point[leftdown].y ; point[leftdown].y = temp ;
for ( int i = 1 ; i < inn; i ++ ) {
point[i].k = atan2( point[i].y - point[ 0 ].y, point[i].x - point[ 0 ].x ) ;
} // 以点(minx, miny)计算极角
}
double xmult( POINT & p1, POINT & p2, POINT & p0 )
{ // 计算叉乘--线段旋转方向和对应的四边形的面积--返回(p1-p0)*(p2-p0)叉积
// if叉积为正--p0p1在p0p2的顺时针方向; if(x==0)共线
return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y) ;
}
int gramcmp1( const void * a, const void * b )
{
struct POINT * c = ( struct POINT * )a ;
struct POINT * d = ( struct POINT * )b ;
if ( c -> k - d -> k > eps ) return 1 ;
else if ( c -> k - d -> k < - 1 * eps ) return - 1 ;
else // 斜率相等距离远的点在先
return c -> x - d -> x > 0 ? 1 : - 1 ;
}
int gramcmp( const void * a, const void * b )
{
struct POINT * c = ( struct POINT * )a ;
struct POINT * d = ( struct POINT * )b ;
double xmult_val = xmult( * c, * d, point[ 0 ] ) ;
if ( xmult_val > eps ) return - 1 ;
else if ( xmult_val < - 1 * eps ) return 1 ;
else return c -> x - d -> x > 0 ? 1 : - 1 ;
// else
// return fdist( c->x,c->y,point[0].x,point[0].y )>fdist(d->x,d->y,point[0].x,point[0].y)? -1:1 ;
}
void gramham()
{ // 凸包的点存在于stack[]中
qsort( point + 1 , inn - 1 , sizeof (point[ 1 ]), gramcmp ) ; // 极坐标排序--注意只有(n-1)个点
// int stack[size] ; int top = 2 ;
stack[ 0 ] = 0 ; stack[ 1 ] = 1 ; stack[ 2 ] = 2 ; top = 2 ;
for ( int i = 3 ; i < inn; i ++ )
{
while ( top >= 1 && xmult( point[i], point[stack[top]], point[stack[top - 1 ]] ) >=- 1 * eps )
top -- ; // 顺时针方向--删除栈顶元素
stack[ ++ top] = i ; // 新元素入栈
}
/*
for( int i=0; i<=top; i++ )
{
//printf( "%lf===%lf\n",point[stack[i]].x, point[stack[i]].y ) ;
cout << point[stack[i]].x << "====" << point[stack[i]].y << endl ;
}
*/
}
double flen_poly()
{ // 计算凸包的周长
double len = 0.0 ; double x1, x2, y1, y2 ;
for ( int i = 0 ; i < top; i ++ ) {
x1 = point[stack[i + 1 ]].x ; x2 = point[stack[i]].x ;
y1 = point[stack[i + 1 ]].y ; y2 = point[stack[i]].y ;
len += fdist( x1, y1, x2, y2 ) ;
}
x1 = point[stack[ 0 ]].x ; x2 = point[stack[top]].x ;
y1 = point[stack[ 0 ]].y ; y2 = point[stack[top]].y ;
len += fdist( x1, y1, x2, y2 ) ;
return len ;
}
double farea_poly( int n, POINT poly[] )
{
double area = 0.0 ; double s1 = 0.0 , s2 = 0.0 ;
for ( int i = 0 ; i < n; i ++ )
{
s1 += poly[stack[(i + 1 ) % n]].y * poly[stack[i % n]].x ;
s2 += poly[stack[(i + 1 ) % n]].y * poly[stack[(i + 2 ) % n]].x ;
}
return fabs( s1 - s2 ) / 2 ;
}
void process()
{
gramham() ; // 保存好凸包的点在stack[]中
outarea = farea_poly( top + 1 , point ) ;
}
void output()
{
printf( " %d\n " , ( int )outarea / 50 ) ;
}
int main()
{
// freopen( "fc.in", "r", stdin ) ;
// freopen( "fc.out","w",stdout ) ;
// freopen( "in.txt", "r", stdin ) ;
while ( scanf( " %d " , & inn ) != EOF )
{
input() ;
process() ;
output() ;
}
return 0 ;
}
// 典型的凸包和计算多边形面积
#include < stdio.h >
#include < stdlib.h >
#include < string .h >
#include < ctype.h >
#include < math.h >
#include < iostream >
using namespace std ;
#define unllong unsigned long long
#define unint unsigned int
#define printline printf( "\n" )
typedef long long llong ;
// const double PI = 2.0 * acos( 0.0 ) ;
#define zero(x) (((x)>0?(x):-(x))<eps)
const int Base = 1000000000 ; // 高精度
const int Capacity = 100 ; // 高精度
const double eps = 1e - 8 ;
const int INF = 1000000 ;
const int size = 10010 ;
struct POINT
{
double x ;
double y ;
double k ;
};
struct POINT point[size] ;
int stack[size] ;
int top = 2 ;
int inn ;
double outarea ;
double fdist( double x1, double y1, double x2, double y2 )
{
return sqrt( (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) ) ;
}
void input()
{
int leftdown = 0 ;
for ( int i = 0 ; i < inn; i ++ ) {
scanf( " %lf %lf " , & point[i].x, & point[i].y ) ;
// if( miny>point[i].y || miny==point[i].y&&minx>point[i].x )
if ( point[leftdown].y > point[i].y || zero(point[leftdown].y - point[i].y) && point[leftdown].x > point[i].x )
leftdown = i ; // 找到最左下的点
}
double temp ;
temp = point[ 0 ].x ; point[ 0 ].x = point[leftdown].x ; point[leftdown].x = temp ;
temp = point[ 0 ].y ; point[ 0 ].y = point[leftdown].y ; point[leftdown].y = temp ;
for ( int i = 1 ; i < inn; i ++ ) {
point[i].k = atan2( point[i].y - point[ 0 ].y, point[i].x - point[ 0 ].x ) ;
} // 以点(minx, miny)计算极角
}
double xmult( POINT & p1, POINT & p2, POINT & p0 )
{ // 计算叉乘--线段旋转方向和对应的四边形的面积--返回(p1-p0)*(p2-p0)叉积
// if叉积为正--p0p1在p0p2的顺时针方向; if(x==0)共线
return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y) ;
}
int gramcmp1( const void * a, const void * b )
{
struct POINT * c = ( struct POINT * )a ;
struct POINT * d = ( struct POINT * )b ;
if ( c -> k - d -> k > eps ) return 1 ;
else if ( c -> k - d -> k < - 1 * eps ) return - 1 ;
else // 斜率相等距离远的点在先
return c -> x - d -> x > 0 ? 1 : - 1 ;
}
int gramcmp( const void * a, const void * b )
{
struct POINT * c = ( struct POINT * )a ;
struct POINT * d = ( struct POINT * )b ;
double xmult_val = xmult( * c, * d, point[ 0 ] ) ;
if ( xmult_val > eps ) return - 1 ;
else if ( xmult_val < - 1 * eps ) return 1 ;
else return c -> x - d -> x > 0 ? 1 : - 1 ;
// else
// return fdist( c->x,c->y,point[0].x,point[0].y )>fdist(d->x,d->y,point[0].x,point[0].y)? -1:1 ;
}
void gramham()
{ // 凸包的点存在于stack[]中
qsort( point + 1 , inn - 1 , sizeof (point[ 1 ]), gramcmp ) ; // 极坐标排序--注意只有(n-1)个点
// int stack[size] ; int top = 2 ;
stack[ 0 ] = 0 ; stack[ 1 ] = 1 ; stack[ 2 ] = 2 ; top = 2 ;
for ( int i = 3 ; i < inn; i ++ )
{
while ( top >= 1 && xmult( point[i], point[stack[top]], point[stack[top - 1 ]] ) >=- 1 * eps )
top -- ; // 顺时针方向--删除栈顶元素
stack[ ++ top] = i ; // 新元素入栈
}
/*
for( int i=0; i<=top; i++ )
{
//printf( "%lf===%lf\n",point[stack[i]].x, point[stack[i]].y ) ;
cout << point[stack[i]].x << "====" << point[stack[i]].y << endl ;
}
*/
}
double flen_poly()
{ // 计算凸包的周长
double len = 0.0 ; double x1, x2, y1, y2 ;
for ( int i = 0 ; i < top; i ++ ) {
x1 = point[stack[i + 1 ]].x ; x2 = point[stack[i]].x ;
y1 = point[stack[i + 1 ]].y ; y2 = point[stack[i]].y ;
len += fdist( x1, y1, x2, y2 ) ;
}
x1 = point[stack[ 0 ]].x ; x2 = point[stack[top]].x ;
y1 = point[stack[ 0 ]].y ; y2 = point[stack[top]].y ;
len += fdist( x1, y1, x2, y2 ) ;
return len ;
}
double farea_poly( int n, POINT poly[] )
{
double area = 0.0 ; double s1 = 0.0 , s2 = 0.0 ;
for ( int i = 0 ; i < n; i ++ )
{
s1 += poly[stack[(i + 1 ) % n]].y * poly[stack[i % n]].x ;
s2 += poly[stack[(i + 1 ) % n]].y * poly[stack[(i + 2 ) % n]].x ;
}
return fabs( s1 - s2 ) / 2 ;
}
void process()
{
gramham() ; // 保存好凸包的点在stack[]中
outarea = farea_poly( top + 1 , point ) ;
}
void output()
{
printf( " %d\n " , ( int )outarea / 50 ) ;
}
int main()
{
// freopen( "fc.in", "r", stdin ) ;
// freopen( "fc.out","w",stdout ) ;
// freopen( "in.txt", "r", stdin ) ;
while ( scanf( " %d " , & inn ) != EOF )
{
input() ;
process() ;
output() ;
}
return 0 ;
}