Windows NT/2000/XP下不用驱动的Ring0代码实现

[转载]Windows NT/2000/XP下不用驱动的Ring0代码实现

Windows NT/2000/XP下不用驱动的Ring0代码实现     
            WebCrazy(http://webcrazy.yeah.net/)

    大家知道,Windows NT/2000为实现其可靠性,严格将系统划分为内核模式与用户模式,在i386系统中分别对应CPU的Ring0与Ring3级别。Ring0下,可以执行特权级指令,对任何I/O设备都有访问权等等。要实现从用户态进入核心态,即从Ring 3进入Ring 0必须借助CPU的某种门机制,如中断门、调用门等。而Windows NT/2000提供用户态执行系统服务(Ring 0例程)的此类机制即System Service的int 2eh中断服务等,严格的参数检查,只能严格的执行Windows NT/2000提供的服务,而如果想执行用户提供的Ring 0代码(指运行在Ring 0权限的代码),常规方法似乎只有编写设备驱动程序。本文将介绍一种在用户态不借助任何驱动程序执行Ring0代码的方法。

    Windows NT/2000将设备驱动程序调入内核区域(常见的位于地址0x80000000上),由DPL为0的GDT项8,即cs为8时实现Ring 0权限。本文通过在系统中构造一个指向我们的代码的调用门(CallGate),实现Ring0代码。基于这个思路,为实现这个目的主要是构造自己的CallGate。CallGate由系统中叫Global Descriptor Table(GDT)的全局表指定。GDT地址可由i386指令sgdt获得(sgdt不是特权级指令,普通Ring 3程序均可执行)。GDT地址在Windows NT/2000保存于KPCR(Processor Control Region)结构中(见《再谈Windows NT/2000环境切换》)。GDT中的CallGate是如下的格式:
    typedef  struct
    

        unsigned 
short  offset_0_15;
        unsigned 
short  selector;

        unsigned 
char    param_count : 4;
        unsigned 
char    some_bits   : 4;

        unsigned 
char    type        : 4;
        unsigned 
char    app_system  : 1;
        unsigned 
char    dpl         : 2;
        unsigned 
char    present     : 1;
    
        unsigned 
short  offset_16_31;
     }
 CALLGATE_DESCRIPTOR;
    GDT位于内核区域,一般用户态的程序是不可能对这段内存区域有直接的访问权。幸运的是Windows NT/2000提供了一个叫PhysicalMemory的Section内核对象位于\Device的路径下。顾名思义,通过这个Section对象可以对物理内存进行操作。用objdir.exe对这个对象分析如下:
    C:\NTDDK\bin > objdir  / D \Device

    PhysicalMemory                   
        Section
        DACL 
-  
           Ace[ 
0 -  Grant  -   0xf001f   -  NT AUTHORITY\SYSTEM
                             Inherit: 
                             Access: 
0x001F   and  ( D RCtl WOwn WDacl )

           Ace[ 
1 -  Grant  -   0x2000d   -  BUILTIN\Administrators
                             Inherit: 
                             Access: 
0x000D   and  ( RCtl )
   从dump出的这个对象DACL的Ace可以看出默认情况下只有SYSTEM用户才有对这个对象的读写权限,即对物理内存有读写能力,而Administrator只有读权限,普通用户根本就没有权限。不过如果我们有Administrator权限就可以通过GetSecurityInfo、SetEntriesInAcl与SetSecurityInfo这些API来修改这个对象的ACE。这也是我提供的代码需要Administrator的原因。实现的代码如下:
   VOID SetPhyscialMemorySectionCanBeWrited(HANDLE hSection)
    


       PACL pDacl
=NULL;
       PACL pNewDacl
=NULL;
       PSECURITY_DESCRIPTOR pSD
=NULL;
       DWORD dwRes;
       EXPLICIT_ACCESS ea;

       
if(dwRes=GetSecurityInfo(hSection,SE_KERNEL_OBJECT,DACL_SECURITY_INFORMATION,
                  NULL,NULL,
&pDacl,NULL,&pSD)!=ERROR_SUCCESS)
          

             printf( 
"GetSecurityInfo Error %u\n", dwRes );
             
goto CleanUp;
           }


       ZeroMemory(
&ea, sizeof(EXPLICIT_ACCESS));
       ea.grfAccessPermissions 
= SECTION_MAP_WRITE;
       ea.grfAccessMode 
= GRANT_ACCESS;
       ea.grfInheritance
= NO_INHERITANCE;
       ea.Trustee.TrusteeForm 
= TRUSTEE_IS_NAME;
       ea.Trustee.TrusteeType 
= TRUSTEE_IS_USER;
       ea.Trustee.ptstrName 
= "CURRENT_USER";


       
if(dwRes=SetEntriesInAcl(1,&ea,pDacl,&pNewDacl)!=ERROR_SUCCESS)
          

             printf( 
"SetEntriesInAcl %u\n", dwRes );
             
goto CleanUp;
           }


       
if(dwRes=SetSecurityInfo(hSection,SE_KERNEL_OBJECT,DACL_SECURITY_INFORMATION,NULL,NULL,pNewDacl,NULL)!=ERROR_SUCCESS)
          

             printf(
"SetSecurityInfo %u\n",dwRes);
             
goto CleanUp;
           }


    CleanUp:

       
if(pSD)
          LocalFree(pSD);
       
if(pNewDacl)
          LocalFree(pSD);
     }


    这段代码对给定HANDLE的对象增加了如下的ACE: 

    PhysicalMemory                   
        Section
        DACL 
-  
           Ace[ 
0 -  Grant  -   0x2   -  WEBCRAZY\Administrator
                             Inherit: 
                             Access: 
0x0002      // SECTION_MAP_WRITE

   这样我们在有Administrator权限的条件下就有了对物理内存的读写能力。但若要修改GDT表实现Ring 0代码。我们将面临着另一个难题,因为sgdt指令获得的GDT地址是虚拟地址(线性地址),我们只有知道GDT表的物理地址后才能通过\Device\PhysicalMemory对象修改GDT表,这就牵涉到了线性地址转化成物理地址的问题。我们先来看一看Windows NT/2000是如何实现这个的:
    kd >  u nt ! MmGetPhysicalAddress l  30
    ntoskrnl
! MmGetPhysicalAddress:
    801374e0 
56                push    esi
    801374e1 8b742408         mov     esi,[esp
+ 0x8 ]
    801374e5 33d2             xor     edx,edx
    801374e7 81fe00000080     cmp     esi,
0x80000000
    801374ed 722c             jb    ntoskrnl
! MmGetPhysicalAddress + 0x2b  (8013751b)
    801374ef 81fe000000a0     cmp     esi,
0xa0000000
    801374f5 
7324              jnb   ntoskrnl ! MmGetPhysicalAddress + 0x2b  (8013751b)
    801374f7 39153ce71780     cmp     [ntoskrnl
! MmKseg2Frame (8017e73c)],edx
    801374fd 741c             jz    ntoskrnl
! MmGetPhysicalAddress + 0x2b  (8013751b)
    801374ff 8bc6             mov     eax,esi
    
80137501  c1e80c           shr     eax, 0xc
    
80137504  25ffff0100       and     eax, 0x1ffff
    
80137509  6a0c             push     0xc
    8013750b 
59                pop     ecx
    8013750c e8d3a7fcff       call    ntoskrnl
! _allshl (80101ce4)
    
80137511  81e6ff0f0000     and     esi, 0xfff
    
80137517  03c6             add     eax,esi
    
80137519  eb17             jmp   ntoskrnl ! MmGetPhysicalAddress + 0x57  ( 80137532 )
    8013751b 8bc6             mov     eax,esi
    8013751d c1e80a           shr     eax,
0xa
    
80137520  25fcff3f00       and     eax, 0x3ffffc
    
80137525  2d00000040       sub     eax, 0x40000000
    8013752a 8b00             mov     eax,[eax]
    8013752c a801             test    al,
0x1
    8013752e 
7506              jnz   ntoskrnl ! MmGetPhysicalAddress + 0x44  ( 80137536 )
    
80137530  33c0             xor     eax,eax
    
80137532  5e               pop     esi
    
80137533  c20400           ret      0x4
    从这段汇编代码可看出如果线性地址在0x80000000与0xa0000000范围内,只是简单的进行移位操作(位于801374ff-80137519指令间),并未查页表。我想Microsoft这样安排肯定是出于执行效率的考虑。这也为我们指明了一线曙光,因为GDT表在Windows NT/2000中一般情况下均位于这个区域(我不知道/3GB开关的Windows NT/2000是不是这种情况)。

    经过这样的分析,我们就可以只通过用户态程序修改GDT表了。而增加一个CallGate就不是我可以介绍的了,找本Intel手册自己看一看了。具体实现代码如下:
    typedef  struct  gdtr 
        
short Limit;
        
short BaseLow;
        
short BaseHigh;
     }
 Gdtr_t,  * PGdtr_t;

    ULONG MiniMmGetPhysicalAddress(ULONG virtualaddress)
    

        
if(virtualaddress<0x80000000||virtualaddress>=0xA0000000)
           
return 0;
        
return virtualaddress&0x1FFFF000;
     }


    BOOL ExecRing0Proc(ULONG Entry,ULONG seglen)
    

       Gdtr_t gdt;
       __asm sgdt gdt;
     
       ULONG mapAddr
=MiniMmGetPhysicalAddress(gdt.BaseHigh<<16U|gdt.BaseLow);
       
if(!mapAddr) return 0;

       HANDLE   hSection
=NULL;
       NTSTATUS status;
       OBJECT_ATTRIBUTES        objectAttributes;
       UNICODE_STRING objName;
       CALLGATE_DESCRIPTOR 
*cg;

       status 
= STATUS_SUCCESS;
   
       RtlInitUnicodeString(
&objName,L"\\Device\\PhysicalMemory");

       InitializeObjectAttributes(
&objectAttributes,
                                  
&objName,
                                  OBJ_CASE_INSENSITIVE 
| OBJ_KERNEL_HANDLE,
                                  NULL,
                                 (PSECURITY_DESCRIPTOR) NULL);

       status 
= ZwOpenSection(&hSection,SECTION_MAP_READ|SECTION_MAP_WRITE,&objectAttributes);

       
if(status == STATUS_ACCESS_DENIED)
          status 
= ZwOpenSection(&hSection,READ_CONTROL|WRITE_DAC,&objectAttributes);
          SetPhyscialMemorySectionCanBeWrited(hSection);
          ZwClose(hSection);
          status 
=ZwOpenSection(&hSection,SECTION_MAP_WRITE|SECTION_MAP_WRITE,&objectAttributes);
        }


       
if(status != STATUS_SUCCESS)
         

            printf(
"Error Open PhysicalMemory Section Object,Status:%08X\n",status);
            
return 0;
          }

      
       PVOID BaseAddress;

       BaseAddress
=MapViewOfFile(hSection,
                     FILE_MAP_READ
|FILE_MAP_WRITE,
                     
0,
                     mapAddr,    
//low part
                     (gdt.Limit+1));

       
if(!BaseAddress)
          

             printf(
"Error MapViewOfFile:");
             PrintWin32Error(GetLastError());
             
return 0;
           }


       BOOL setcg
=FALSE;

       
for(cg=(CALLGATE_DESCRIPTOR *)((ULONG)BaseAddress+(gdt.Limit&0xFFF8));(ULONG)cg>(ULONG)BaseAddress;cg--)
           
if(cg->type == 0)
             cg
->offset_0_15 = LOWORD(Entry);
             cg
->selector = 8;
             cg
->param_count = 0;
             cg
->some_bits = 0;
             cg
->type = 0xC;          // 386 call gate
             cg->app_system = 0;      // A system descriptor
             cg->dpl = 3;             // Ring 3 code can call
             cg->present = 1;
             cg
->offset_16_31 = HIWORD(Entry);
             setcg
=TRUE;
             
break;
           }


       
if(!setcg)
            ZwClose(hSection);
            
return 0;
        }


       
short farcall[3];

       farcall[
2]=((short)((ULONG)cg-(ULONG)BaseAddress))|3;  //Ring 3 callgate;

       
if(!VirtualLock((PVOID)Entry,seglen))
          

             printf(
"Error VirtualLock:");
             PrintWin32Error(GetLastError());
             
return 0;
           }


       SetThreadPriority(GetCurrentThread(),THREAD_PRIORITY_TIME_CRITICAL);

       Sleep(
0);

       _asm call fword ptr [farcall]

       SetThreadPriority(GetCurrentThread(),THREAD_PRIORITY_NORMAL);

       VirtualUnlock((PVOID)Entry,seglen);

       
//Clear callgate
       *(ULONG *)cg=0;
       
*((ULONG *)cg+1)=0;

       ZwClose(hSection);
       
return TRUE;

     }


    我在提供的代码中演示了对Control Register与I/O端口的操作。CIH病毒在Windows 9X中就是因为获得Ring 0权限才有了一定的危害,但Windows NT/2000毕竟不是Windows 9X,她已经有了比较多的安全审核机制,本文提供的代码也要求具有Administrator权限,但如果系统存在某种漏洞,如缓冲区溢出等等,还是有可能获得这种权限的,所以我不对本文提供的方法负有任何的责任,所有讨论只是一个技术热爱者在讨论技术而已。谢谢! 

    参考资料:
      1.Intel Corp<<Intel Architecture Software Developer's Manual,Volume 3>> 

你可能感兴趣的:(Windows NT/2000/XP下不用驱动的Ring0代码实现)