poj 3074
数独问题
采用跳舞链方法会得到比较快的速度
用跳舞链解决的方法主要是将问题的模型转换成01覆盖模型,然后模板之
首先要了解它的限制条件:
(1) 每一格只能填一个数字
(2) 每一列的数字是不同的
(3) 每一行的数字是不同的
(4) 每一个九宫格的数字是不同的
那么我们可以构造出一组状态:
行状态(i,j,k):表示第i行第j列填第k个数
列状态(i,j,k):表示第k个限制的子状态为(i,j),子状态根据限制而定
所以对于N层数独来说,行有N*N*N,列有4*N*N
然后对于给出的数独,如果改格子没有数字就枚举每个可能出现的数字插入,有数字就插入现成的,然后用跳舞链一下,就出结果了
代码:
1
#include
<
stdio.h
>
2
#include
<
string
.h
>
3![]()
4
const
int
N
=
9
;
5![]()
6
const
int
MAX_WIDTH
=
4
*
N
*
N
+
10
;
7
const
int
MAX_HEIGHT
=
N
*
N
*
N
+
10
;
8![]()
9
struct
DancingLinkNode
10![]()
{
11
int row;
12
int col;
13
DancingLinkNode* pR,*pL,*pU,*pD;
14
}
;
15
DancingLinkNode memPool[MAX_WIDTH
*
MAX_HEIGHT];
16![]()
17
class
DancingLink
18![]()
{
19
private:
20
DancingLinkNode head;
21
DancingLinkNode rows[MAX_HEIGHT];
22
DancingLinkNode columns[MAX_WIDTH];
23
int size[MAX_WIDTH];
24
int nodeUseNum;//use to the memory pool
25
public:
26
int len;
27
int ans[MAX_HEIGHT];
28
DancingLink()
29![]()
{
30
}
31
void init(int _r,int _c)
32![]()
{
33
nodeUseNum = 0;
34
head.row = _r;
35
head.col = _c;
36
head.pD = head.pL = head.pR = head.pU = &head;
37![]()
38
for(int i = 0; i < _c; ++i)
39![]()
{
40
columns[i].row = _r;
41
columns[i].col = i;
42
columns[i].pL = &head;
43
columns[i].pR = head.pR;
44
columns[i].pL->pR = &columns[i];
45
columns[i].pR->pL = &columns[i];
46
columns[i].pU = columns[i].pD = &columns[i];
47
size[i] = 0;
48
}
49![]()
50
for(int i = _r - 1; i >= 0; --i)
51![]()
{
52
rows[i].col = _c;
53
rows[i].row = i;
54
rows[i].pU = &head;
55
rows[i].pD = head.pD;
56
rows[i].pU->pD = &rows[i];
57
rows[i].pD->pU = &rows[i];
58
rows[i].pL = rows[i].pR = &rows[i];
59
}
60
memset(ans,0,sizeof(ans));
61
len = 0;
62
}
63![]()
64
void addNode(int _r,int _c)
65![]()
{
66
DancingLinkNode* newNode = &memPool[nodeUseNum++];
67
newNode->col = _c;
68
newNode->row = _r;
69
70
newNode->pR = &rows[_r];
71
newNode->pL = rows[_r].pL;
72
newNode->pL->pR = newNode;
73
newNode->pR->pL = newNode;
74![]()
75
newNode->pD = &columns[_c];
76
newNode->pU = columns[_c].pU;
77
newNode->pU->pD = newNode;
78
newNode->pD->pU = newNode;
79![]()
80
++size[_c];
81![]()
82
}
83
void removeByLR(DancingLinkNode* _node)
84![]()
{
85
_node->pL->pR = _node->pR;
86
_node->pR->pL = _node->pL;
87
}
88
void removeByUD(DancingLinkNode* _node)
89![]()
{
90
_node->pD->pU = _node->pU;
91
_node->pU->pD = _node->pD;
92
}
93
94
void resumeByLR(DancingLinkNode* _node)
95![]()
{
96
_node->pL->pR = _node;
97
_node->pR->pL = _node;
98
}
99![]()
100
void resumeByUD(DancingLinkNode* _node)
101![]()
{
102
_node->pD->pU = _node;
103
_node->pU->pD = _node;
104
}
105![]()
106
void cover(int _c)
107![]()
{
108
if(_c >= 0 && _c < head.col)
109![]()
{
110
removeByLR(&columns[_c]);
111
for(DancingLinkNode* pCol = columns[_c].pD; pCol != &columns[_c]; pCol = pCol->pD)
112![]()
{
113
if(pCol->col == head.col)
114![]()
{
115
continue;
116
}
117
for(DancingLinkNode* pRow = pCol->pR; pRow != pCol; pRow = pRow->pR)
118![]()
{
119
if(pRow->col == head.col)
120![]()
{
121
continue;
122
}
123
--size[pRow->col];
124
removeByUD(pRow);
125
}
126
removeByLR(pCol);
127
}
128
}
129
}
130![]()
131
void resume(int _c)
132![]()
{
133
if(_c >= 0 && _c < head.col)
134![]()
{
135
for(DancingLinkNode* pCol = columns[_c].pU; pCol != &columns[_c]; pCol = pCol->pU)
136![]()
{
137
if(pCol->col == head.col)
138![]()
{
139
continue;
140
}
141
resumeByLR(pCol);
142
for(DancingLinkNode* pRow = pCol->pL; pRow != pCol; pRow = pRow->pL)
143![]()
{
144
if(pRow->col == head.col)
145![]()
{
146
continue;
147
}
148
++size[pRow->col];
149
resumeByUD(pRow);
150
}
151
}
152
resumeByLR(&columns[_c]);
153
}
154
}
155![]()
156![]()
157
bool dfs(int _k)
158![]()
{
159
if(head.pL == &head)
160![]()
{
161
len = _k;
162
return true;
163
}
164
//选择列(最小元素优先)
165
int minV = (1 << 30);
166
int minVcol = -1;
167
for(DancingLinkNode* pNode = head.pL; pNode != &head; pNode = pNode->pL)
168![]()
{
169
if(size[pNode->col] < minV)
170![]()
{
171
minV = size[pNode->col];
172
minVcol = pNode->col;
173
}
174
}
175
cover(minVcol);
176
for(DancingLinkNode* pNode = columns[minVcol].pD; pNode != &columns[minVcol]; pNode = pNode->pD)
177![]()
{
178
ans[_k] = pNode->row;
179
pNode->pL->pR = pNode;
180
for(DancingLinkNode* pNode2 = pNode->pR; pNode2 != pNode; pNode2 = pNode2->pR)
181![]()
{
182
cover(pNode2->col);
183
}
184
if(dfs(_k+1))
185![]()
{
186
return true;
187
}
188
pNode->pR->pL = pNode;
189
for(DancingLinkNode* pNode2 = pNode->pL; pNode2 != pNode; pNode2 = pNode2->pL)
190![]()
{
191
resume(pNode2->col);
192
}
193
pNode->pL->pR = pNode->pR;
194
}
195
resume(minVcol);
196
return false;
197
}
198![]()
199
void Print()
200![]()
{
201
for(DancingLinkNode* pRow = head.pD; pRow != &head; pRow = pRow->pD)
202![]()
{
203
if(pRow->row == head.row)
204![]()
{
205
continue;
206
}
207
for(DancingLinkNode* pCol = pRow->pR; pCol != pRow; pCol = pCol->pR)
208![]()
{
209
if(pCol->col == head.col)
210
continue;
211
printf("(%d %d),",pCol->row,pCol->col);
212
}
213
printf("\n");
214
}
215
}
216
}
;
217
DancingLink DLX;
218
char
str[
320
];
219![]()
220
void
Insert(
int
_r,
int
_c,
int
_k)
221![]()
{
222
int t = N*_r + _c;
223
int R = N*N*_k + t ;
224
int C = t ;
225
int B = ((int)(_r/3))*3 + _c/3;
226![]()
227
DLX.addNode(R,C);
228
C = N*N + N*_r + _k;
229
DLX.addNode(R,C);
230
C = 2*N*N + N*_c + _k;
231
DLX.addNode(R,C);
232
C = 3*N*N + N*B + _k;
233
DLX.addNode(R,C);
234
}
235![]()
236
void
PrintAns()
237![]()
{
238
int reAns[N][N];
239
for(int i = 0; i < DLX.len; ++i)
240![]()
{
241
int k = DLX.ans[i] / (N*N);
242
int r = (DLX.ans[i] - k*N*N)/N;
243
int c = DLX.ans[i] - k*N*N - r*N;
244
reAns[r][c] = k+1;
245
}
246
for(int i = 0; i < N; ++i)
247![]()
{
248
for(int j = 0; j < N; ++j)
249![]()
{
250
printf("%d",reAns[i][j]);
251
}
252
}
253
printf("\n");
254
}
255![]()
256
void
Test()
257![]()
{
258
DLX.init(N*N*N,4*N*N);
259
for(int i = 0; i < N; ++i)
260![]()
{
261
for(int j = 0; j < N; ++j)
262![]()
{
263
if(str[i*N+j] == '.')
264![]()
{
265
for(int k = 0; k < N; ++k)
266![]()
{
267
Insert(i,j,k);
268
}
269
}
270
else
271![]()
{
272
Insert(i,j,str[i*N+j]-'1');
273
}
274
}
275
}
276
if(DLX.dfs(0))
277![]()
{
278
PrintAns();
279
}
280
}
281![]()
282
int
main()
283![]()
{
284
while(gets(str))
285![]()
{
286
if(strcmp(str,"end") == 0)
287
break;
288
Test();
289
}
290
return 0;
291
}
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29

30
31
32

33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

85
86
87
88
89

90
91
92
93
94
95

96
97
98
99
100
101

102
103
104
105
106
107

108
109

110
111
112

113
114

115
116
117
118

119
120

121
122
123
124
125
126
127
128
129
130
131
132

133
134

135
136

137
138

139
140
141
142
143

144
145

146
147
148
149
150
151
152
153
154
155
156
157
158

159
160

161
162
163
164
165
166
167
168

169
170

171
172
173
174
175
176
177

178
179
180
181

182
183
184
185

186
187
188
189
190

191
192
193
194
195
196
197
198
199
200

201
202

203
204

205
206
207
208

209
210
211
212
213
214
215
216
217
218
219
220
221

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

238
239
240

241
242
243
244
245
246
247

248
249

250
251
252
253
254
255
256
257

258
259
260

261
262

263
264

265
266

267
268
269
270
271

272
273
274
275
276
277

278
279
280
281
282
283

284
285

286
287
288
289
290
291
同理,3076如法炮制