遗传算法系列 (3) 交叉算法
基因交叉,或者基因重组,就是把两个父体部分结构加以替换,生成新的个体的操作,习惯上对实数编码的操作叫做重组(Recombination),对二进制编码的操作称为交叉(crossover)。
比较常用的一些算法介绍如下:
1. 重组算法(Recombination)
实值重组产生子个体一般是用下边这个算法:
子个体=父个体1 + a × ( 父个体2 - 父个体1 )
这里a是一个比例因子,可以由[ -d, 1+d] 上边服从均匀分布的随机数产生。
不同的重组算法,a的取值是不同的,一般来讲,d=0.25是一个比较好的选择。
下边一段c++代码片断,实现一个中值重组算法,其中d取值为0。
1
/*
2 Gene Crossover Algorithm
3 Linear Recombination Xover Algorithm
4
5 A crossover operator that linearly combines two parent
6 chromosome vectors to produce two new offspring a
7 ccording to the following equations:
8
9 Offspring1 = a * Parent1 + (1- a) * Parent2
10 Offspring2 = (1 – a) * Parent1 + a * Parent2
11
12
13 where a is a random weighting factor (chosen before each
14 crossover operation).
15
16 Consider the following 2 parents (each consisting of 4
17 float genes) which have been selected for crossover:
18
19 Parent 1: (0.3)(1.4)(0.2)(7.4)
20 Parent 2: (0.5)(4.5)(0.1)(5.6)
21
22 If a = 0.7, the following two offspring would be produced:
23
24 Offspring1: (0.36)(2.33)(0.17)(6.86)
25 Offspring2: (0.402)(2.981)(0.149)(6.842)
26 */
27 template < class GENE >
28 class Intermediate_Recombination_Gene_Crossover_Algorithm
29 {
30 public :
31 void operator ()( GENE & g1, GENE & g2 ) const
32 {
33 assert( g1.Upper == g2.Upper );
34 assert( g1.Lower == g2.Lower );
35
36 const long double Ran = ran();
37 const long double sum = g1.Value + g2.Value;
38
39 if ( sum < g1.Upper )
40 {
41 g1.Value = Ran * sum;
42 g2.Value = sum - g1.Value;
43 }
44 else
45 {
46 const long double sub = 2 . 0L * g1.Upper - sum;
47 g1.Value = g1.Upper - sub * Ran;
48 g2.Value = g1.Upper - sub + sub * Ran;
49 }
50 }
51 };
2. 交叉算法
如上文遗传算法中的数据结构中所讲,基因的二进制编码有直接编码(Normal)和Gray编码之分,以下所说算法,均适用于这两种算法。
假设基因的二进制编码长度为N,那么这些编码之间有N-1个空隙,可供交叉使用。
二进制交叉算法就是 如何选择空隙,选择多少个空隙。
以下将各走极端的选择一个空隙交叉的单点交叉算法,和选择N-1个空隙进行交叉的洗牌交叉算法大致说一下。
(1) 单点交叉
在二进制编码中,随机选择一个点,以这个点为界限,相互交换变量。
如
父个体1 011111110000000000
父个体2 000000001111111111
如粗体前边位置为所选择的交叉点,那么生成的子个体为:
子个体1 011111111111111111
子个体2 000000000000000000
以下为c++实现,采用Gray编码,直接编码的类似。
(2)洗牌交叉
洗牌交叉就是,将一个父基因取一半,再上来自另外一个父基因的一半,构成一个新的子基因。
算法代码如下:
3. 另外的一些代码
(1)群体中的交叉算法
将经过选择考验的个体放入一个群体,当放入的个体数量达到要求后,对里边的个体进行两两交叉。
(2) 交叉函数定义
2 Gene Crossover Algorithm
3 Linear Recombination Xover Algorithm
4
5 A crossover operator that linearly combines two parent
6 chromosome vectors to produce two new offspring a
7 ccording to the following equations:
8
9 Offspring1 = a * Parent1 + (1- a) * Parent2
10 Offspring2 = (1 – a) * Parent1 + a * Parent2
11
12
13 where a is a random weighting factor (chosen before each
14 crossover operation).
15
16 Consider the following 2 parents (each consisting of 4
17 float genes) which have been selected for crossover:
18
19 Parent 1: (0.3)(1.4)(0.2)(7.4)
20 Parent 2: (0.5)(4.5)(0.1)(5.6)
21
22 If a = 0.7, the following two offspring would be produced:
23
24 Offspring1: (0.36)(2.33)(0.17)(6.86)
25 Offspring2: (0.402)(2.981)(0.149)(6.842)
26 */
27 template < class GENE >
28 class Intermediate_Recombination_Gene_Crossover_Algorithm
29 {
30 public :
31 void operator ()( GENE & g1, GENE & g2 ) const
32 {
33 assert( g1.Upper == g2.Upper );
34 assert( g1.Lower == g2.Lower );
35
36 const long double Ran = ran();
37 const long double sum = g1.Value + g2.Value;
38
39 if ( sum < g1.Upper )
40 {
41 g1.Value = Ran * sum;
42 g2.Value = sum - g1.Value;
43 }
44 else
45 {
46 const long double sub = 2 . 0L * g1.Upper - sum;
47 g1.Value = g1.Upper - sub * Ran;
48 g2.Value = g1.Upper - sub + sub * Ran;
49 }
50 }
51 };
2. 交叉算法
如上文遗传算法中的数据结构中所讲,基因的二进制编码有直接编码(Normal)和Gray编码之分,以下所说算法,均适用于这两种算法。
假设基因的二进制编码长度为N,那么这些编码之间有N-1个空隙,可供交叉使用。
二进制交叉算法就是 如何选择空隙,选择多少个空隙。
以下将各走极端的选择一个空隙交叉的单点交叉算法,和选择N-1个空隙进行交叉的洗牌交叉算法大致说一下。
(1) 单点交叉
在二进制编码中,随机选择一个点,以这个点为界限,相互交换变量。
如
父个体1 011111110000000000
父个体2 000000001111111111
如粗体前边位置为所选择的交叉点,那么生成的子个体为:
子个体1 011111111111111111
子个体2 000000000000000000
以下为c++实现,采用Gray编码,直接编码的类似。
1
/*
2 Gene crossover algorithm
3 One Point Crossover using Gray binary encoding
4
5 A crossover operator that randomly selects a crossover point
6 within a chromosome then interchanges the two parent chromosomes
7 at this point to produce two new offspring.
8
9 Consider the following 2 parents which have been selected for
10 crossover. The “|” symbol indicates the randomly chosen
11 crossover point.
12
13 Parent 1: 11001|010
14 Parent 2: 00100|111
15
16 After interchanging the parent chromosomes at the crossover
17 point, the following offspring are produced:
18
19 Offspring1: 11001|111
20 Offspring2: 00100|010
21 */
22 template < class GENE >
23 class Gray_Binary_Single_Point_Xover_Gene_Crossover_Algorithm
24 {
25 public :
26 void operator ()( GENE & g1, GENE & g2 ) const
27 {
28 encoding( g1 );
29 encoding( g2 );
30 assert( g1.Binary_Array.size() == g2.Binary_Array.size() );
31
32 normal2gray( g1 );
33 normal2gray( g2 );
34
35 const unsigned int Pos = static_cast < unsigned int >
36 ( g1.Binary_Array.size() * ran() );
37
38 for ( unsigned int i = 0 ; i < Pos; ++ i )
39 {
40 if ( g1.Binary_Array[i] xor g2.Binary_Array[i] )
41 {
42 if ( g1.Binary_Array[i] )
43 {
44 g1.Binary_Array[i] = 0 ;
45 g2.Binary_Array[i] = 1 ;
46 }
47 else
48 {
49 g1.Binary_Array[i] = 1 ;
50 g2.Binary_Array[i] = 0 ;
51 }
52 }
53 }
54
55 gray2normal( g1 );
56 gray2normal( g1 );
57 decoding( g1 );
58 decoding( g2 );
59 }
60 };
61
62
63
2 Gene crossover algorithm
3 One Point Crossover using Gray binary encoding
4
5 A crossover operator that randomly selects a crossover point
6 within a chromosome then interchanges the two parent chromosomes
7 at this point to produce two new offspring.
8
9 Consider the following 2 parents which have been selected for
10 crossover. The “|” symbol indicates the randomly chosen
11 crossover point.
12
13 Parent 1: 11001|010
14 Parent 2: 00100|111
15
16 After interchanging the parent chromosomes at the crossover
17 point, the following offspring are produced:
18
19 Offspring1: 11001|111
20 Offspring2: 00100|010
21 */
22 template < class GENE >
23 class Gray_Binary_Single_Point_Xover_Gene_Crossover_Algorithm
24 {
25 public :
26 void operator ()( GENE & g1, GENE & g2 ) const
27 {
28 encoding( g1 );
29 encoding( g2 );
30 assert( g1.Binary_Array.size() == g2.Binary_Array.size() );
31
32 normal2gray( g1 );
33 normal2gray( g2 );
34
35 const unsigned int Pos = static_cast < unsigned int >
36 ( g1.Binary_Array.size() * ran() );
37
38 for ( unsigned int i = 0 ; i < Pos; ++ i )
39 {
40 if ( g1.Binary_Array[i] xor g2.Binary_Array[i] )
41 {
42 if ( g1.Binary_Array[i] )
43 {
44 g1.Binary_Array[i] = 0 ;
45 g2.Binary_Array[i] = 1 ;
46 }
47 else
48 {
49 g1.Binary_Array[i] = 1 ;
50 g2.Binary_Array[i] = 0 ;
51 }
52 }
53 }
54
55 gray2normal( g1 );
56 gray2normal( g1 );
57 decoding( g1 );
58 decoding( g2 );
59 }
60 };
61
62
63
(2)洗牌交叉
洗牌交叉就是,将一个父基因取一半,再上来自另外一个父基因的一半,构成一个新的子基因。
算法代码如下:
1
template
<
class
GENE
>
2 class Gray_Binary_Shuffle_Xover_Gene_Crossover_Algorithm
3 {
4 public :
5 void operator ()( GENE & g1, GENE & g2 ) const
6 {
7 encoding( g1 );
8 encoding( g2 );
9 assert( g1.Binary_Array.size() == g2.Binary_Array.size() );
10
11 normal2gray( g1 );
12 normal2gray( g2 );
13
14 const unsigned int Size = g1.Binary_Array.size();
15
16 for ( unsigned int i = 0 ; i < Size; ++ i )
17 {
18 if ( ( i & 1 ) &&
19 ( g1.Binary_Array[i] xor g2.Binary_Array[i] )
20 )
21 {
22 if ( g1.Binary_Array[i] )
23 {
24 g1.Binary_Array[i] = 0 ;
25 g2.Binary_Array[i] = 1 ;
26 }
27 else
28 {
29 g1.Binary_Array[i] = 1 ;
30 g2.Binary_Array[i] = 0 ;
31 }
32 }
33 }
34
35 gray2normal( g1 );
36 gray2normal( g1 );
37 decoding( g1 );
38 decoding( g2 );
39 }
40 };
41
42
2 class Gray_Binary_Shuffle_Xover_Gene_Crossover_Algorithm
3 {
4 public :
5 void operator ()( GENE & g1, GENE & g2 ) const
6 {
7 encoding( g1 );
8 encoding( g2 );
9 assert( g1.Binary_Array.size() == g2.Binary_Array.size() );
10
11 normal2gray( g1 );
12 normal2gray( g2 );
13
14 const unsigned int Size = g1.Binary_Array.size();
15
16 for ( unsigned int i = 0 ; i < Size; ++ i )
17 {
18 if ( ( i & 1 ) &&
19 ( g1.Binary_Array[i] xor g2.Binary_Array[i] )
20 )
21 {
22 if ( g1.Binary_Array[i] )
23 {
24 g1.Binary_Array[i] = 0 ;
25 g2.Binary_Array[i] = 1 ;
26 }
27 else
28 {
29 g1.Binary_Array[i] = 1 ;
30 g2.Binary_Array[i] = 0 ;
31 }
32 }
33 }
34
35 gray2normal( g1 );
36 gray2normal( g1 );
37 decoding( g1 );
38 decoding( g2 );
39 }
40 };
41
42
3. 另外的一些代码
(1)群体中的交叉算法
将经过选择考验的个体放入一个群体,当放入的个体数量达到要求后,对里边的个体进行两两交叉。
1
//
Population Crossover Algorithm
2 // 1. get the number of Chromosomes in the Population
3 // 2. get the number of Gens in a Chromosome
4 // 3. generate a random number
5 // 4. if the random number is bigger than the probability, skip
6 // 5. if the selected two genes are of the same value, skip
7 // 6. crossover the two genes using the selected Gene crossover algorithm
8 template < class POPULATION, class GENE_CROSSOVER_ALGORITHM >
9 class Population_Crossover_Algorithm
10 {
11 public :
12 void operator ()( POPULATION & population ) const
13 {
14 // 1
15 const unsigned int C_Size = population.Chromosome_Array.size();
16 assert( C_Size > 1 );
17
18 // 2
19 const unsigned int G_Size = population.Chromosome_Array[ 0 ].Gene_Array.size();
20
21 for ( unsigned int i = 0 ; i < C_Size / 2 ; ++ i )
22 {
23 for ( unsigned int j = 0 ; j < G_Size; ++ j )
24 {
25 // 3
26 const long double Ran = ran();
27 // 4
28 if ( Ran > population.Crossover_Probability )
29 continue ;
30 // 5
31 if ( population.Chromosome_Array[i].Gene_Array[j].Value ==
32 population.Chromosome_Array[C_Size - i - 1 ].Gene_Array[j].Value
33 )
34 continue ;
35 // 6
36 crossover(
37 population.Chromosome_Array[i].Gene_Array[j],
38 population.Chromosome_Array[C_Size - i - 1 ].Gene_Array[j],
39 GENE_CROSSOVER_ALGORITHM()
40 );
41 }
42 }
43 }
44 };
2 // 1. get the number of Chromosomes in the Population
3 // 2. get the number of Gens in a Chromosome
4 // 3. generate a random number
5 // 4. if the random number is bigger than the probability, skip
6 // 5. if the selected two genes are of the same value, skip
7 // 6. crossover the two genes using the selected Gene crossover algorithm
8 template < class POPULATION, class GENE_CROSSOVER_ALGORITHM >
9 class Population_Crossover_Algorithm
10 {
11 public :
12 void operator ()( POPULATION & population ) const
13 {
14 // 1
15 const unsigned int C_Size = population.Chromosome_Array.size();
16 assert( C_Size > 1 );
17
18 // 2
19 const unsigned int G_Size = population.Chromosome_Array[ 0 ].Gene_Array.size();
20
21 for ( unsigned int i = 0 ; i < C_Size / 2 ; ++ i )
22 {
23 for ( unsigned int j = 0 ; j < G_Size; ++ j )
24 {
25 // 3
26 const long double Ran = ran();
27 // 4
28 if ( Ran > population.Crossover_Probability )
29 continue ;
30 // 5
31 if ( population.Chromosome_Array[i].Gene_Array[j].Value ==
32 population.Chromosome_Array[C_Size - i - 1 ].Gene_Array[j].Value
33 )
34 continue ;
35 // 6
36 crossover(
37 population.Chromosome_Array[i].Gene_Array[j],
38 population.Chromosome_Array[C_Size - i - 1 ].Gene_Array[j],
39 GENE_CROSSOVER_ALGORITHM()
40 );
41 }
42 }
43 }
44 };
种群的交叉只涉及一个交叉主体,而基因/个体的交叉涉及两个交叉主体,定义如下:
1
//
Population crossover only
2 template < class POPULATION, class ALGORITHM >
3 void crossover( POPULATION & p, // the Population to perform crossover
4 const ALGORITHM & a ) // the Algorithm used for the crossover
5 {
6 assert( p.Chromosome_Array.size() > 1 );
7 a( p );
8 }
9
10
11 // gene crossover algorithm
12 template < class GENE, class ALGORITHM >
13 static void crossover( GENE & g1, // Gene1 to perform crossvoer
14 GENE & g2, // Gene2 to perform crossvoer
15 const ALGORITHM & a ) // the Algorithm employed
16 {
17 a( g1, g2 );
18 }
19
2 template < class POPULATION, class ALGORITHM >
3 void crossover( POPULATION & p, // the Population to perform crossover
4 const ALGORITHM & a ) // the Algorithm used for the crossover
5 {
6 assert( p.Chromosome_Array.size() > 1 );
7 a( p );
8 }
9
10
11 // gene crossover algorithm
12 template < class GENE, class ALGORITHM >
13 static void crossover( GENE & g1, // Gene1 to perform crossvoer
14 GENE & g2, // Gene2 to perform crossvoer
15 const ALGORITHM & a ) // the Algorithm employed
16 {
17 a( g1, g2 );
18 }
19