- python图像识别哪些库_利用ImageAI库只需几行python代码实现目标检测
weixin_39667398
python图像识别哪些库
什么是目标检测目标检测关注图像中特定的物体目标,需要同时解决解决定位(localization)+识别(Recognition)。相比分类,检测给出的是对图片前景和背景的理解,我们需要从背景中分离出感兴趣的目标,并确定这一目标的描述(类别和位置),因此检测模型的输出是一个列表,列表的每一项使用一个数组给出检出目标的类别和位置(常用矩形检测框的坐标表示)。通俗的说,ObjectDetection的目
- DeepSpeed zero1,zero2,zero3和FSDP区别详解
ALGORITHM LOL
python分布式
1.基本概念DeepSpeedZeROZeRO是由MicrosoftDeepSpeed团队开发的一种内存优化技术,旨在通过分片模型状态来训练超大模型,减少每个GPU的内存占用,同时避免传统模型并行(如张量并行或流水线并行)所需的代码修改。ZeRO分为三个阶段(Stage1、Stage2、Stage3),每阶段逐步增加分片的范围,从而进一步降低内存需求。FSDP(FullyShardedDataPa
- 操作系统一致性模型全解析:强一致性 vs 最终一致性
操作系统内核探秘
网络ai
操作系统一致性模型全解析:强一致性vs最终一致性关键词:操作系统、一致性模型、强一致性、最终一致性、数据同步摘要:本文深入探讨了操作系统中的一致性模型,重点解析了强一致性和最终一致性这两种常见的模型。通过生动形象的比喻和实际案例,详细介绍了这两种一致性模型的概念、原理、适用场景以及它们之间的区别。同时,还给出了相关的代码示例,帮助读者更好地理解和应用这两种一致性模型。希望读者通过本文能够对操作系统
- 探秘鸿蒙系统在操作系统领域的智能推荐
操作系统内核探秘
操作系统内核揭秘OSharmonyos华为ai
探秘鸿蒙系统在操作系统领域的智能推荐:像懂你的智能管家一样,悄悄把你需要的送到面前关键词:鸿蒙系统、智能推荐、分布式软总线、场景感知、原子化服务、意图理解、操作系统摘要:本文将带你揭开鸿蒙系统智能推荐功能的神秘面纱。我们会从“为什么手机能猜到我要打车?”这样的生活场景出发,用“小区快递站”“便利店即食餐”等通俗比喻,拆解鸿蒙分布式软总线、场景感知引擎、意图理解模型等核心技术;结合Python代码模
- Python 中如何使用 Conda 管理版本和创建 Django 项目
懂搬砖
Python小白成长记原力计划pythoncondadjango
文章目录引言一、思维导图二、Conda基础操作1.安装Conda2.创建和管理环境创建新环境激活环境查看所有环境删除环境3.安装和管理包安装包查看已安装的包更新包删除包三、使用Conda环境创建Django项目1.激活Conda环境2.创建Django项目3.启动开发服务器4.创建Django应用5.配置项目和应用配置**settings.py**定义模型迁移数据库四、总结引言在Python开发中
- vue中ajax同步_Vue 同步异步存值取值实现案例
小樱茉莉
vue中ajax同步
1.vue中各个组件之间传值1.父子组件父组件–>子组件,通过子组件的自定义属性:props子组件–>父组件,通过自定义事件:this.emit(′事件名′,参数1,参数2,...);2.非父子组件或父子组件通过数据总数Bus,this.root.$emit(‘事件名',参数1,参数2,…)3.非父子组件或父子组件更好的方式是在vue中使用vuex方法1:用组件之间通讯。这样写很麻烦,并且写着写着
- GNN多任务预测模型实现(二):将EXCEL数据转换为图数据
走的远一些
神经网络知识分享知识备份人工智能深度学习
目录一.引言二.加载和检查数据三.提取特征和标签四.标准化特征五.构建节点索引六.构建边及其特征七.总结八.结语一.引言在图神经网络(GraphNeuralNetworks,GNNs)的多任务学习场景中,数据预处理是至关重要的一步。尤其是当我们的数据存储在表格格式(如Excel文件)中时,如何有效地将其转换为图数据格式,是搭建GNN模型的基础。二.加载和检查数据第一步是加载数据并检查其格式。我们通
- 大数据基础知识-Hadoop、HBase、Hive一篇搞定
原来是猪猪呀
hadoop大数据分布式
HadoopHadoop是一个由Apache基金会所开发的分布式系统基础架构,其核心设计包括分布式文件系统(HDFS)和MapReduce编程模型;Hadoop是一个开源的分布式计算框架,旨在帮助用户在不了解分布式底层细节的情况下,开发分布式程序。它通过利用集群的力量,提供高速运算和存储能力,特别适合处理超大数据集的应用程序。Hadoop生态圈Hadoop生态圈是一个由多个基于Hadoop开发的相
- 文献阅读篇#8:YOLO如何实现多模态
hjs_deeplearning
YOLO人工智能深度学习目标检测多模态模态融合
一、引言YOLO众所周知是一个目标检测、跟踪、计数等等的视觉模型,对于YOLO来说,它的核心功能还是分类,识别出物体的类别并辅助以计数、跟踪等等功能。但是,光使用一个YOLO模型进行目标检测只能提取一张图片的特征,或者只能通过一条路去提取特征,最终输出结果。而前面提到的多模态,则会引入另一个维度的特征。例如二区Top期刊《Underwateracousticintelligentspectrums
- 软件工程领域测试用例设计的高效流程
软件工程实践
软件工程最佳实践AI软件构建大数据系统架构软件工程测试用例ai
软件工程领域测试用例设计的高效流程关键词:软件工程、测试用例设计、高效流程、测试覆盖、缺陷发现摘要:本文聚焦于软件工程领域中测试用例设计的高效流程。详细介绍了测试用例设计的背景知识,包括目的、预期读者等。通过生动形象的比喻解释核心概念,如测试用例像给软件做的“体检项目单”。阐述了核心概念间的关系,并给出了原理和架构的示意图及流程图。深入讲解了核心算法原理、数学模型,结合Python代码进行示例。通
- Python和OpenCV实现车牌识别的毕业设计案例
媛源啊
本文还有配套的精品资源,点击获取简介:本项目通过Python和OpenCV库,实现了一个实用的车牌识别系统,包含图像捕获、预处理、车牌定位、车牌分割和字符识别等步骤。系统提供了一键运行的完整代码,使学生能够快速掌握计算机视觉和深度学习应用。遇到的挑战和解决方案也进行了讨论,比如光照变化、车牌角度不一致和污损的处理,以及数据增强技术和模型参数优化。1.车牌识别系统的基本理论和应用1.1车牌识别的背景
- PyTorch实战:从零开始构建CIFAR-10图像分类模型 (附详细代码与图解)
电脑能手
pytorch分类人工智能深度学习python
PyTorch实战:从零开始构建CIFAR-10图像分类模型(附详细代码与图解)大家好!今天,我们将一起踏上一段激动人心的深度学习之旅:使用强大的PyTorch框架,从零开始构建一个卷积神经网络(CNN),来解决经典的CIFAR-10图像分类问题。无论你是深度学习的新手,还是希望巩固PyTorch基础知识的开发者,本文都将为你提供一个清晰、详尽的实战指南。本文目标读完本文,你将学会:加载和预处理C
- day41
m0_62568655
python训练营python
#原始模型(2层卷积)classOriginalCNN(nn.Module):def__init__(self):super().__init__()self.conv1=nn.Conv2d(1,16,3)self.conv2=nn.Conv2d(16,32,3)self.fc=nn.Linear(32*5*5,10)defforward(self,x):x=torch.relu(self.con
- Day44
1.预训练概念:在大规模数据上训练模型学习通用知识,再迁移到下游任务微调2.常见模型:图像有AlexNet、ResNet、ViT;NLP有BERT、GPT3.图像模型发展:从手工特征到深度学习,从CNN到Transformer、多模态4.预训练策略:数据增强、自监督/监督训练、模型微调、多模态学习作业1.importtorchimporttorch.nnasnnimporttorch.optima
- 重构企业智能服务:大模型部署背后的战略与落地实践
慌ZHANG
人工智能人工智能
个人主页:慌ZHANG-CSDN博客期待您的关注一、引言:从“能用”到“可用”的时代跃迁过去一年中,大语言模型(LLMs)实现了从实验室“黑科技”到企业场景“生产力”的巨大跃迁。无论是通用问答、客户支持、文本生成、知识库问询,还是代码辅助、财报分析,大模型的边界已快速渗透到各行各业。然而,许多企业在试图将ChatGPT或DeepSeek等模型引入自己的业务系统时却发现:在线服务存在数据泄露风险;响
- maven详解
Maven是一个广泛使用的自动化构建工具,主要用于Java项目的构建、依赖管理和项目信息管理。它由Apache软件基金会维护,旨在简化Java项目的开发流程,提高开发效率,并促进团队协作。Maven的核心是项目对象模型(ProjectObjectModel,POM)。POM是一个XML文件(pom.xml),用于描述项目的结构、依赖、插件配置等。每个Maven项目都有一个唯一的pom.xml文件,
- 百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
2025年6月30日,百度如期兑现2月14日的预告,正式开源文心大模型4.5(ERNIE4.5)系列,涵盖10款不同参数规模的模型,包括470亿参数混合专家(MoE)模型、30亿参数MoE模型及3亿参数稠密型模型,实现预训练权重与推理代码的完全开放。这一举措标志着国内大模型技术向生态化、普惠化迈出关键一步。开源矩阵与授权机制:兼顾商业应用与技术共享文心大模型4.5系列基于ApacheLicense
- 百度文心大模型4.5系列正式开源,开源会给百度带来什么?
6月30日,百度正式开源文心大模型4.5系列模型,百度的大动作我们该如何分析呢?首先,从平台经济与网络效应的角度来看,百度开源文心大模型4.5系列有助于迅速扩大用户基础,增强开发者粘性,构建以飞桨为核心的技术生态。接入用户越多,数据反馈越丰富,模型迭代越快,形成“技术—用户—数据”的正向循环,提升生态壁垒。其次,从成本分摊与创新激励的角度来看,开源能有效降低百度在模型后训练、部署等环节的边际成本,
- 【大模型面试】大模型Prompt Engineer面试题及参考答案
大模型知识
prompt人工智能开发语言pythonchatgpt深度学习大模型
一、基础概念类1.什么是大模型?大模型通常指具有庞大参数规模的机器学习模型,尤其是在自然语言处理(NLP)和计算机视觉等领域。这些模型能够学习到大量数据中的复杂模式和特征,具备强大的泛化能力,可在多种任务上表现出色,如GPT系列、BERT等。2.大模型与传统机器学习模型的区别是什么?传统机器学习模型参数规模相对较小,往往针对特定任务进行设计和训练,需要较多人工特征工程。而大模型参数数量庞大,通过在
- 大规模预训练语言模型的参数高效微调
人工智能咨询培训老师叶梓转载标明出处大规模预训练语言模型(PLMs)在特定下游任务上的微调和存储成本极高,这限制了它们在实际应用中的可行性。为了解决这一问题,来自清华大学和北京人工智能研究院的研究团队探索了一种优化模型中一小部分参数的方法,同时保持其他参数不变,以大幅降低计算和存储成本。研究团队提出了“delta-tuning”这一概念,将优化的参数部分称为“delta”,即在训练过程中被“改变”
- SAM 图像分割算法计算物体表面积
loong_XL
深度学习图像CV算法SAM图像面积计算图像算法cv图像分割
参考:https://enpeicv.com/forum.php?mod=viewthread&tid=90&extra=page%3D1使用SAM算法进行图像分割,计算出分割图像有多少像素,然后根据像素数量计算实际面积局限:此方法适用于物体与参考物体一个平面内,如果物体在参考物体的前后立体位置,准确性可能不大好SAM安装及模型下载:https://github.com/facebookresea
- LLaVA-1.5:强大的多模态大模型(包含论文代码详解)
Sherlock Ma
AIGC多模态大模型pythonaiAIGC人工智能深度学习
1.概述LLaVA是一个由威斯康星大学麦迪逊分校、微软研究院和哥伦比亚大学的研究人员开发的大型语言和视觉助手。它是一个端到端训练的大型多模态模型,结合了视觉编码器和语言模型,用于通用的视觉和语言理解。微软研究院、威斯康星大学的研究人员在LLaVA基础之上,继续开源了LLaVA-1.5版本。与前一代相比,LLaVA-1.5引入了跨模态连接器和特定格式的学术视觉问答数据集,全面提升了多模态理解和生成能
- Segment Anything in High Quality之SAM-HQ论文阅读
qq_41627642
深度学习论文阅读论文阅读
摘要最近的SegmentAnythingModel(SAM)在扩展分割模型规模方面取得了重大突破,具备强大的零样本能力和灵活的提示机制。尽管SAM在训练时使用了11亿个掩码,其掩码预测质量在许多情况下仍不理想,尤其是对于结构复杂的目标。我们提出了HQ-SAM,使SAM能够精确地分割任意目标,同时保留其原有的可提示设计、高效性和零样本泛化能力。我们的设计充分复用并保留了SAM预训练的模型权重,仅引入
- 大语言模型应用提示工程Prompt Engineering
全栈你个大西瓜
人工智能大模型自然语言处理prompt人工智能提示工程
提示工程(PromptEngineering)是指通过精心设计和优化输入提示(prompt),以引导人工智能模型(如大型语言模型)生成更符合预期的输出。一、提示工程的核心任务明确任务目标确定模型需要完成的具体任务(如文本生成、翻译、分类、问答等)。示例:需要模型生成一篇产品评测vs.需要模型总结文章要点。设计提示结构包含必要的上下文、示例、格式要求和约束条件。示例:请根据以下产品参数生成一段吸引人
- 探索提示词工程的魅力:提升你的AI应用到新高度
杭律沛Meris
探索提示词工程的魅力:提升你的AI应用到新高度Prompt-Engineering-Guide-zh项目地址:https://gitcode.com/gh_mirrors/pr/Prompt-Engineering-Guide-zh在人工智能的快速发展前沿,提示词工程指南-中文版犹如一盏明灯,照亮了语言模型应用的新路径。本项目是由PartnerDAO精心翻译并维护,旨在构建一个全面的知识库,帮助开
- React 学习计划
夜游猿
Reactreact.js学习前端
React学习计划前置知识目标熟练掌握HTML、CSS和JavaScript的基础知识。了解ES6+的新特性。学习内容HTML:标签属性表单布局CSS:选择器盒模型布局(Flexbox,Grid)响应式设计JavaScript:变量数据类型控制结构函数对象数组DOM操作ES6+:箭头函数模板字符串解构赋值类模块化资源MDNWeb文档《你不知道的JavaScript》(上卷)React基础目标能够创
- 60个顶级DeepSeek学术提示词,2小时完成毕业论文,建议收藏
爱学习的懒洋洋
论文笔记AIGC
朋友们,写论文的苦,你懂我也懂。好消息是:有了DeepSeek等AI大模型,你只需要掌握正确的提示词(Prompt),论文就能1小时出大纲,1小时出正文,连答辩都能帮你安排上!下面这份60个顶级学术Prompt清单,涵盖选题+大纲+写作+润色+降重+答辩+引用全流程,建议点赞收藏+转发给你身边写论文的人一、论文选题与方向建议(10个)帮我根据“[专业/方向]”推荐10个有研究价值的毕业论文选题根据
- 数据治理 × 知识库 × 大模型:解开企业智能化转型的 “不可能三角”
“数据是新时代的石油,但未经治理的石油会堵塞管道;知识是企业的黄金矿脉,但缺乏提炼的矿石无法兑换价值;大模型是超级引擎,但燃料不足的引擎终将熄火。”——唯有四者协同,才能让企业的智能化转型从“纸上蓝图”走向“落地生根”。一、数据治理:AI时代的“地基工程”(1)数据治理的三大核心模块•标准化体系:◦数据字典与元数据管理:某跨国零售企业通过建立统一的数据字典(例如“销售额”统一定义为“含税交易金额”
- Prompt Engineering Guide — 提示工程全方位指南
司南锤
GitHubprompt
项目概述PromptEngineeringGuide是一个由DAIRAILab维护的开源项目,致力于系统性地总结和分享提示工程(PromptEngineering)的理论与实践方法。随着大语言模型(如GPT系列、Claude、Gemini等)的广泛应用,如何设计有效提示以发挥模型最大能力,成为当前人工智能领域的重要研究和应用方向。该项目以教程、案例和最佳实践为核心,帮助开发者和研究者快速掌握提示设
- AutoMedPrompt的技术,自动优化提示词
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonmvc
AutoMedPrompt的技术,自动优化提示词让大语言模型在医学答题方面的表现大幅提升,甚至能让开源模型在某些医学数据集上超过GPT-4等商业模型。AutoMedPrompt原理深度解析与实例说明一、核心原理:文本梯度驱动的提示词优化1.传统提示工程的痛点手动设计提示词依赖专家经验,难以覆盖医学领域的复杂性(如不同专科考点、病例变异)。固定提示词(如CoT思维链)无法动态适应具体问题,可能引入无
- Hadoop(一)
朱辉辉33
hadooplinux
今天在诺基亚第一天开始培训大数据,因为之前没接触过Linux,所以这次一起学了,任务量还是蛮大的。
首先下载安装了Xshell软件,然后公司给了账号密码连接上了河南郑州那边的服务器,接下来开始按照给的资料学习,全英文的,头也不讲解,说锻炼我们的学习能力,然后就开始跌跌撞撞的自学。这里写部分已经运行成功的代码吧.
在hdfs下,运行hadoop fs -mkdir /u
- maven An error occurred while filtering resources
blackproof
maven报错
转:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources
maven报错:
maven An error occurred while filtering resources
Maven -> Update Proje
- jdk常用故障排查命令
daysinsun
jvm
linux下常见定位命令:
1、jps 输出Java进程
-q 只输出进程ID的名称,省略主类的名称;
-m 输出进程启动时传递给main函数的参数;
&nb
- java 位移运算与乘法运算
周凡杨
java位移运算乘法
对于 JAVA 编程中,适当的采用位移运算,会减少代码的运行时间,提高项目的运行效率。这个可以从一道面试题说起:
问题:
用最有效率的方法算出2 乘以8 等於几?”
答案:2 << 3
由此就引发了我的思考,为什么位移运算会比乘法运算更快呢?其实简单的想想,计算机的内存是用由 0 和 1 组成的二
- java中的枚举(enmu)
g21121
java
从jdk1.5开始,java增加了enum(枚举)这个类型,但是大家在平时运用中还是比较少用到枚举的,而且很多人和我一样对枚举一知半解,下面就跟大家一起学习下enmu枚举。先看一个最简单的枚举类型,一个返回类型的枚举:
public enum ResultType {
/**
* 成功
*/
SUCCESS,
/**
* 失败
*/
FAIL,
- MQ初级学习
510888780
activemq
1.下载ActiveMQ
去官方网站下载:http://activemq.apache.org/
2.运行ActiveMQ
解压缩apache-activemq-5.9.0-bin.zip到C盘,然后双击apache-activemq-5.9.0-\bin\activemq-admin.bat运行ActiveMQ程序。
启动ActiveMQ以后,登陆:http://localhos
- Spring_Transactional_Propagation
布衣凌宇
springtransactional
//事务传播属性
@Transactional(propagation=Propagation.REQUIRED)//如果有事务,那么加入事务,没有的话新创建一个
@Transactional(propagation=Propagation.NOT_SUPPORTED)//这个方法不开启事务
@Transactional(propagation=Propagation.REQUIREDS_N
- 我的spring学习笔记12-idref与ref的区别
aijuans
spring
idref用来将容器内其他bean的id传给<constructor-arg>/<property>元素,同时提供错误验证功能。例如:
<bean id ="theTargetBean" class="..." />
<bean id ="theClientBean" class=&quo
- Jqplot之折线图
antlove
jsjqueryWebtimeseriesjqplot
timeseriesChart.html
<script type="text/javascript" src="jslib/jquery.min.js"></script>
<script type="text/javascript" src="jslib/excanvas.min.js&
- JDBC中事务处理应用
百合不是茶
javaJDBC编程事务控制语句
解释事务的概念; 事务控制是sql语句中的核心之一;事务控制的作用就是保证数据的正常执行与异常之后可以恢复
事务常用命令:
Commit提交
- [转]ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
bijian1013
java多线程线程安全HashMap
在Java类库中出现的第一个关联的集合类是Hashtable,它是JDK1.0的一部分。 Hashtable提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的――Hashtable的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。Hashtable的后继者HashMap是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的
- ng-if与ng-show、ng-hide指令的区别和注意事项
bijian1013
JavaScriptAngularJS
angularJS中的ng-show、ng-hide、ng-if指令都可以用来控制dom元素的显示或隐藏。ng-show和ng-hide根据所给表达式的值来显示或隐藏HTML元素。当赋值给ng-show指令的值为false时元素会被隐藏,值为true时元素会显示。ng-hide功能类似,使用方式相反。元素的显示或
- 【持久化框架MyBatis3七】MyBatis3定义typeHandler
bit1129
TypeHandler
什么是typeHandler?
typeHandler用于将某个类型的数据映射到表的某一列上,以完成MyBatis列跟某个属性的映射
内置typeHandler
MyBatis内置了很多typeHandler,这写typeHandler通过org.apache.ibatis.type.TypeHandlerRegistry进行注册,比如对于日期型数据的typeHandler,
- 上传下载文件rz,sz命令
bitcarter
linux命令rz
刚开始使用rz上传和sz下载命令:
因为我们是通过secureCRT终端工具进行使用的所以会有上传下载这样的需求:
我遇到的问题:
sz下载A文件10M左右,没有问题
但是将这个文件A再传到另一天服务器上时就出现传不上去,甚至出现乱码,死掉现象,具体问题
解决方法:
上传命令改为;rz -ybe
下载命令改为:sz -be filename
如果还是有问题:
那就是文
- 通过ngx-lua来统计nginx上的虚拟主机性能数据
ronin47
ngx-lua 统计 解禁ip
介绍
以前我们为nginx做统计,都是通过对日志的分析来完成.比较麻烦,现在基于ngx_lua插件,开发了实时统计站点状态的脚本,解放生产力.项目主页: https://github.com/skyeydemon/ngx-lua-stats 功能
支持分不同虚拟主机统计, 同一个虚拟主机下可以分不同的location统计.
可以统计与query-times request-time
- java-68-把数组排成最小的数。一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的。例如输入数组{32, 321},则输出32132
bylijinnan
java
import java.util.Arrays;
import java.util.Comparator;
public class MinNumFromIntArray {
/**
* Q68输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。
* 例如输入数组{32, 321},则输出这两个能排成的最小数字32132。请给出解决问题
- Oracle基本操作
ccii
Oracle SQL总结Oracle SQL语法Oracle基本操作Oracle SQL
一、表操作
1. 常用数据类型
NUMBER(p,s):可变长度的数字。p表示整数加小数的最大位数,s为最大小数位数。支持最大精度为38位
NVARCHAR2(size):变长字符串,最大长度为4000字节(以字符数为单位)
VARCHAR2(size):变长字符串,最大长度为4000字节(以字节数为单位)
CHAR(size):定长字符串,最大长度为2000字节,最小为1字节,默认
- [强人工智能]实现强人工智能的路线图
comsci
人工智能
1:创建一个用于记录拓扑网络连接的矩阵数据表
2:自动构造或者人工复制一个包含10万个连接(1000*1000)的流程图
3:将这个流程图导入到矩阵数据表中
4:在矩阵的每个有意义的节点中嵌入一段简单的
- 给Tomcat,Apache配置gzip压缩(HTTP压缩)功能
cwqcwqmax9
apache
背景:
HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览。相对于普通的浏览过程HTML ,CSS,Javascript , Text ,它可以节省40%左右的流量。更为重要的是,它可以对动态生成的,包括CGI、PHP , JSP , ASP , Servlet,SHTML等输出的网页也能进行压缩,
- SpringMVC and Struts2
dashuaifu
struts2springMVC
SpringMVC VS Struts2
1:
spring3开发效率高于struts
2:
spring3 mvc可以认为已经100%零配置
3:
struts2是类级别的拦截, 一个类对应一个request上下文,
springmvc是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应
所以说从架构本身上 spring3 mvc就容易实现r
- windows常用命令行命令
dcj3sjt126com
windowscmdcommand
在windows系统中,点击开始-运行,可以直接输入命令行,快速打开一些原本需要多次点击图标才能打开的界面,如常用的输入cmd打开dos命令行,输入taskmgr打开任务管理器。此处列出了网上搜集到的一些常用命令。winver 检查windows版本 wmimgmt.msc 打开windows管理体系结构(wmi) wupdmgr windows更新程序 wscrip
- 再看知名应用背后的第三方开源项目
dcj3sjt126com
ios
知名应用程序的设计和技术一直都是开发者需要学习的,同样这些应用所使用的开源框架也是不可忽视的一部分。此前《
iOS第三方开源库的吐槽和备忘》中作者ibireme列举了国内多款知名应用所使用的开源框架,并对其中一些框架进行了分析,同样国外开发者
@iOSCowboy也在博客中给我们列出了国外多款知名应用使用的开源框架。另外txx's blog中详细介绍了
Facebook Paper使用的第三
- Objective-c单例模式的正确写法
jsntghf
单例iosiPhone
一般情况下,可能我们写的单例模式是这样的:
#import <Foundation/Foundation.h>
@interface Downloader : NSObject
+ (instancetype)sharedDownloader;
@end
#import "Downloader.h"
@implementation
- jquery easyui datagrid 加载成功,选中某一行
hae
jqueryeasyuidatagrid数据加载
1.首先你需要设置datagrid的onLoadSuccess
$(
'#dg'
).datagrid({onLoadSuccess :
function
(data){
$(
'#dg'
).datagrid(
'selectRow'
,3);
}});
2.onL
- jQuery用户数字打分评价效果
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/5.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery用户数字打分评分代码 - HoverTree</
- mybatis的paramType
kerryg
DAOsql
MyBatis传多个参数:
1、采用#{0},#{1}获得参数:
Dao层函数方法:
public User selectUser(String name,String area);
对应的Mapper.xml
<select id="selectUser" result
- centos 7安装mysql5.5
MrLee23
centos
首先centos7 已经不支持mysql,因为收费了你懂得,所以内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb,以下为卸载mariadb,安装mysql的步骤。
#列出所有被安装的rpm package rpm -qa | grep mariadb
#卸载
rpm -e mariadb-libs-5.
- 利用thrift来实现消息群发
qifeifei
thrift
Thrift项目一般用来做内部项目接偶用的,还有能跨不同语言的功能,非常方便,一般前端系统和后台server线上都是3个节点,然后前端通过获取client来访问后台server,那么如果是多太server,就是有一个负载均衡的方法,然后最后访问其中一个节点。那么换个思路,能不能发送给所有节点的server呢,如果能就
- 实现一个sizeof获取Java对象大小
teasp
javaHotSpot内存对象大小sizeof
由于Java的设计者不想让程序员管理和了解内存的使用,我们想要知道一个对象在内存中的大小变得比较困难了。本文提供了可以获取对象的大小的方法,但是由于各个虚拟机在内存使用上可能存在不同,因此该方法不能在各虚拟机上都适用,而是仅在hotspot 32位虚拟机上,或者其它内存管理方式与hotspot 32位虚拟机相同的虚拟机上 适用。
- SVN错误及处理
xiangqian0505
SVN提交文件时服务器强行关闭
在SVN服务控制台打开资源库“SVN无法读取current” ---摘自网络 写道 SVN无法读取current修复方法 Can't read file : End of file found
文件:repository/db/txn_current、repository/db/current
其中current记录当前最新版本号,txn_current记录版本库中版本