引子
Android Framework的音频子系统中,每一个音频流对应着一个AudioTrack类的一个实例,每个AudioTrack会在创建时注册到AudioFlinger中,由AudioFlinger把所有的AudioTrack进行混合(Mixer),然后输送到AudioHardware中进行播放,目前Android的Froyo版本设定了同时最多可以创建32个音频流,也就是说,Mixer最多会同时处理32个AudioTrack的数据流。
如何使用AudioTrack
AudioTrack的主要代码位于 frameworks\base\media\libmedia\audiotrack.cpp中。现在先通过一个例子来了解一下如何使用AudioTrack,ToneGenerator是android中产生电话拨号音和其他音调波形的一个实现,我们就以它为例子:
ToneGenerator的初始化函数:
view plaincopy to clipboardprint?
01.bool ToneGenerator::initAudioTrack() {
02. // Open audio track in mono, PCM 16bit, default sampling rate, default buffer size
03. mpAudioTrack = new AudioTrack();
04. mpAudioTrack->set(mStreamType,
05. 0,
06. AudioSystem::PCM_16_BIT,
07. AudioSystem::CHANNEL_OUT_MONO,
08. 0,
09. 0,
10. audioCallback,
11. this,
12. 0,
13. 0,
14. mThreadCanCallJava);
15. if (mpAudioTrack->initCheck() != NO_ERROR) {
16. LOGE("AudioTrack->initCheck failed");
17. goto initAudioTrack_exit;
18. }
19. mpAudioTrack->setVolume(mVolume, mVolume);
20. mState = TONE_INIT;
21. ......
22. }
可见,创建步骤很简单,先new一个AudioTrack的实例,然后调用set成员函数完成参数的设置并注册到AudioFlinger中,然后可以调用其他诸如设置音量等函数进一步设置音频参数。其中,一个重要的参数是audioCallback,audioCallback是一个回调函数,负责响应AudioTrack的通知,例如填充数据、循环播放、播放位置触发等等。回调函数的写法通常像这样:
view plaincopy to clipboardprint?
01.void ToneGenerator::audioCallback(int event, void* user, void *info) {
02. if (event != AudioTrack::EVENT_MORE_DATA) return;
03. AudioTrack::Buffer *buffer = static_cast<AudioTrack::Buffer *>(info);
04. ToneGenerator *lpToneGen = static_cast<ToneGenerator *>(user);
05. short *lpOut = buffer->i16;
06. unsigned int lNumSmp = buffer->size/sizeof(short);
07. const ToneDescriptor *lpToneDesc = lpToneGen->mpToneDesc;
08. if (buffer->size == 0) return;
09.
10. // Clear output buffer: WaveGenerator accumulates into lpOut buffer
11. memset(lpOut, 0, buffer->size);
12. ......
13. // 以下是产生音调数据的代码,略....
14.}
该函数首先判断事件的类型是否是EVENT_MORE_DATA,如果是,则后续的代码会填充相应的音频数据后返回,当然你可以处理其他事件,以下是可用的事件类型:
view plaincopy to clipboardprint?
01.enum event_type {
02. EVENT_MORE_DATA = 0, // Request to write more data to PCM buffer.
03. EVENT_UNDERRUN = 1, // PCM buffer underrun occured.
04. EVENT_LOOP_END = 2, // Sample loop end was reached; playback restarted from loop start if loop count was not 0.
05. EVENT_MARKER = 3, // Playback head is at the specified marker position (See setMarkerPosition()).
06. EVENT_NEW_POS = 4, // Playback head is at a new position (See setPositionUpdatePeriod()).
07. EVENT_BUFFER_END = 5 // Playback head is at the end of the buffer.
08. };
开始播放:
view plaincopy to clipboardprint?
01.mpAudioTrack->start();
停止播放:
view plaincopy to clipboardprint?
01.mpAudioTrack->stop();
只要简单地调用成员函数start()和stop()即可。
AudioTrack和AudioFlinger的通信机制
通常,AudioTrack和AudioFlinger并不在同一个进程中,它们通过android中的binder机制建立联系。
AudioFlinger是android中的一个service,在android启动时就已经被加载。下面这张图展示了他们两个的关系:
图一 AudioTrack和AudioFlinger的关系
我们可以这样理解这张图的含义:
?audio_track_cblk_t实现了一个环形FIFO;
?AudioTrack是FIFO的数据生产者;
?AudioFlinger是FIFO的数据消费者。
建立联系的过程
下面的序列图展示了AudioTrack和AudioFlinger建立联系的过程:
图二 AudioTrack和AudioFlinger建立联系
解释一下过程:
?Framework或者Java层通过JNI,new AudioTrack();
?根据StreamType等参数,通过一系列的调用getOutput();
?如有必要,AudioFlinger根据StreamType打开不同硬件设备;
?AudioFlinger为该输出设备创建混音线程: MixerThread(),并把该线程的id作为getOutput()的返回值返回给AudioTrack;
?AudioTrack通过binder机制调用AudioFlinger的createTrack();
?AudioFlinger注册该AudioTrack到MixerThread中;
?AudioFlinger创建一个用于控制的TrackHandle,并以IAudioTrack这一接口作为createTrack()的返回值;
?AudioTrack通过IAudioTrack接口,得到在AudioFlinger中创建的FIFO(audio_track_cblk_t);
?AudioTrack创建自己的监控线程:AudioTrackThread;
自此,AudioTrack建立了和AudioFlinger的全部联系工作,接下来,AudioTrack可以:
?通过IAudioTrack接口控制该音轨的状态,例如start,stop,pause等等;
?通过对FIFO的写入,实现连续的音频播放;
?监控线程监控事件的发生,并通过audioCallback回调函数与用户程序进行交互;
FIFO的管理
audio_track_cblk_t
audio_track_cblk_t这个结构是FIFO实现的关键,该结构是在createTrack的时候,由AudioFlinger申请相应的内存,然后通过IMemory接口返回AudioTrack的,这样AudioTrack和AudioFlinger管理着同一个audio_track_cblk_t,通过它实现了环形FIFO,AudioTrack向FIFO中写入音频数据,AudioFlinger从FIFO中读取音频数据,经Mixer后送给AudioHardware进行播放。
audio_track_cblk_t的主要数据成员:
user -- AudioTrack当前的写位置的偏移
userBase -- AudioTrack写偏移的基准位置,结合user的值方可确定真实的FIFO地址指针
server -- AudioFlinger当前的读位置的偏移
serverBase -- AudioFlinger读偏移的基准位置,结合server的值方可确定真实的FIFO地址指针
frameCount -- FIFO的大小,以音频数据的帧为单位,16bit的音频每帧的大小是2字节
buffers -- 指向FIFO的起始地址
out -- 音频流的方向,对于AudioTrack,out=1,对于AudioRecord,out=0
audio_track_cblk_t的主要成员函数:
framesAvailable_l()和framesAvailable()用于获取FIFO中可写的空闲空间的大小,只是加锁和不加锁的区别。
view plaincopy to clipboardprint?
01.uint32_t audio_track_cblk_t::framesAvailable_l()
02.{
03. uint32_t u = this->user;
04. uint32_t s = this->server;
05. if (out) {
06. uint32_t limit = (s < loopStart) ? s : loopStart;
07. return limit + frameCount - u;
08. } else {
09. return frameCount + u - s;
10. }
11.}
framesReady()用于获取FIFO中可读取的空间大小。
view plaincopy to clipboardprint?
01.uint32_t audio_track_cblk_t::framesReady()
02.{
03. uint32_t u = this->user;
04. uint32_t s = this->server;
05. if (out) {
06. if (u < loopEnd) {
07. return u - s;
08. } else {
09. Mutex::Autolock _l(lock);
10. if (loopCount >= 0) {
11. return (loopEnd - loopStart)*loopCount + u - s;
12. } else {
13. return UINT_MAX;
14. }
15. }
16. } else {
17. return s - u;
18. }
19.}
我们看看下面的示意图:
_____________________________________________
^ ^ ^ ^
buffer_start server(s) user(u) buffer_end
很明显,frameReady = u - s,frameAvalible = frameCount - frameReady = frameCount - u + s
可能有人会问,应为这是一个环形的buffer,一旦user越过了buffer_end以后,应该会发生下面的情况:
_____________________________________________
^ ^ ^ ^
buffer_start user(u) server(s) buffer_end
这时候u在s的前面,用上面的公式计算就会错误,但是android使用了一些技巧,保证了上述公式一直成立。我们先看完下面三个函数的代码再分析:
view plaincopy to clipboardprint?
01.uint32_t audio_track_cblk_t::stepUser(uint32_t frameCount)
02.{
03. uint32_t u = this->user;
04. u += frameCount;
05. ......
06. if (u >= userBase + this->frameCount) {
07. userBase += this->frameCount;
08. }
09. this->user = u;
10. ......
11. return u;
12.}
view plaincopy to clipboardprint?
01.bool audio_track_cblk_t::stepServer(uint32_t frameCount)
02.{
03. // the code below simulates lock-with-timeout
04. // we MUST do this to protect the AudioFlinger server
05. // as this lock is shared with the client.
06. status_t err;
07. err = lock.tryLock();
08. if (err == -EBUSY) { // just wait a bit
09. usleep(1000);
10. err = lock.tryLock();
11. }
12. if (err != NO_ERROR) {
13. // probably, the client just died.
14. return false;
15. }
16. uint32_t s = this->server;
17. s += frameCount;
18. // 省略部分代码
19. // ......
20. if (s >= serverBase + this->frameCount) {
21. serverBase += this->frameCount;
22. }
23. this->server = s;
24. cv.signal();
25. lock.unlock();
26. return true;
27.}
view plaincopy to clipboardprint?
01.void* audio_track_cblk_t::buffer(uint32_t offset) const
02.{
03. return (int8_t *)this->buffers + (offset - userBase) * this->frameSize;
04.}
stepUser()和stepServer的作用是调整当前偏移的位置,可以看到,他们仅仅是把成员变量user或server的值加上需要移动的数量,user和server的值并不考虑FIFO的边界问题,随着数据的不停写入和读出,user和server的值不断增加,只要处理得当,user总是出现在server的后面,因此frameAvalible()和frameReady()中的算法才会一直成立。根据这种算法,user和server的值都可能大于FIFO的大小:framCount,那么,如何确定真正的写指针的位置呢?这里需要用到userBase这一成员变量,在stepUser()中,每当user的值越过(userBase+frameCount),userBase就会增加frameCount,这样,映射到FIFO中的偏移总是可以通过(user-userBase)获得。因此,获得当前FIFO的写地址指针可以通过成员函数buffer()返回:
p = mClbk->buffer(mclbk->user);
在AudioTrack中,封装了两个函数:obtainBuffer()和releaseBuffer()操作FIFO,obtainBuffer()获得当前可写的数量和写指针的位置,releaseBuffer()则在写入数据后被调用,它其实就是简单地调用stepUser()来调整偏移的位置。
IMemory接口
在createTrack的过程中,AudioFlinger会根据传入的frameCount参数,申请一块内存,AudioTrack可以通过IAudioTrack接口的getCblk()函数获得指向该内存块的IMemory接口,然后AudioTrack通过该IMemory接口的pointer()函数获得指向该内存块的指针,这块内存的开始部分就是audio_track_cblk_t结构,紧接着是大小为frameSize的FIFO内存。
IMemory->pointer() ---->|_______________________________________________________
|__audio_track_cblk_t__|_______buffer of FIFO(size==frameCount)____|
看看AudioTrack的createTrack()的代码就明白了:
view plaincopy to clipboardprint?
01.sp<IAudioTrack> track = audioFlinger->createTrack(getpid(),
02. streamType,
03. sampleRate,
04. format,
05. channelCount,
06. frameCount,
07. ((uint16_t)flags) << 16,
08. sharedBuffer,
09. output,
10. &status);
11. // 得到IMemory接口
12. sp<IMemory> cblk = track->getCblk();
13. mAudioTrack.clear();
14. mAudioTrack = track;
15. mCblkMemory.clear();
16. mCblkMemory = cblk;
17. // 得到audio_track_cblk_t结构
18. mCblk = static_cast<audio_track_cblk_t*>(cblk->pointer());
19. // 该FIFO用于输出
20. mCblk->out = 1;
21. // Update buffer size in case it has been limited by AudioFlinger during track creation
22. mFrameCount = mCblk->frameCount;
23. if (sharedBuffer == 0) {
24. // 给FIFO的起始地址赋值
25. mCblk->buffers = (char*)mCblk + sizeof(audio_track_cblk_t);
26. } else {
27. ..........
28. }