符号位 | 指数位 | 小数部分 | 指数偏移量 |
|
---|---|---|---|---|
单精度浮点数 | 1 位[31] | 8位 [30-23] | 23位 [22-00] | 127 |
双精度浮点数 | 1 位[63] | 11 位[62-52] | 52 位[51-00] | 1023 |
我们以单精度浮点数来说明:
指数是8位,可表达的范围是0到255
而对应的实际的指数是-127到+128
这里特殊说明,-127和+128这两个数据在IEEE当中是保留的用作多种用途的
-127表示的数字是0
128和其他位数组合表示多种意义,最典型的就是NAN状态
从存储结构和算法上来讲,double和float是一样的,不一样的地方仅仅是float是32位的,double是64位的,所以double能存储更高的精度
任何数据在内存中都是以二进制(1或着0)顺序存储的,每一个1或着0被称为1位,而在x86CPU上一个字节是8位。比如一个16位(2字节)的short int型变量的值是1156,那么它的二进制表达就是:00000100 10000100。由于Intel CPU的架构是Little Endian(请参数机算机原理相关知识),所以它是按字节倒序存储的,那么就因该是这样:10000100 00000100,这就是定点数1156在内存中的结构.
我们先不考虑逆序存储的问题,先按照顺序的来讲,最后再把他们翻过来就行了。
现在让我们按照IEEE浮点数表示法,一步步的将float型浮点数12345.0f转换为十六进制代码。在处理这种不带小数的浮点数时,直接将整数部转化为二进制表示:1 11100010 01000000也可以这样表示:11110001001000000.0然后将小数点向左移,一直移到离最高位只有1位,就是最高位的1:1.11100010010000000一共移动了16位,在布耳运算中小数点每向左移一位就等于在以2为底的科学计算法表示中指数+1,所以原数就等于这样:1.11100010010000000 * ( 2 ^ 16 )好了,现在我们要的尾数和指数都出来了。显而易见,最高位永远是1,因为你不可能把买了16个鸡蛋说成是买了0016个鸡蛋吧?(呵呵,可别拿你买的臭鸡蛋甩我~),所以这个1我们还有必要保留他吗?(众:没有!)好的,我们删掉他。这样尾数的二进制就变成了:11100010010000000最后在尾数的后面补0,一直到补够23位:11100010010000000000000(MD,这些个0差点没把我数的背过气去~)
再回来看指数,一共8位,可以表示范围是0 - 255的无符号整数,也可以表示-128 - 127的有符号整数。但因为指数是可以为负的,所以为了统一把十进制的整数化为二进制时,都先加上127,在这里,我们的16加上127后就变成了143,二进制表示为:10001111
12345.0f这个数是正的,所以符号位是0,那么我们按照前面讲的格式把它拼起来:
0 10001111 11100010010000000000000
01000111 11110001 00100000 00000000
再转化为16进制为:47 F1 20 00,最后把它翻过来,就成了:00 20 F1 47。
有了上面的基础后,下面我再举一个带小数的例子来看一下为什么会出现精度问题。
按照IEEE浮点数表示法,将float型浮点数123.456f转换为十六进制代码。对于这种带小数的就需要把整数部和小数部分开处理。整数部直接化二进制:100100011。小数部的处理比较麻烦一些,也不太好讲,可能反着讲效果好一点,比如有一个十进制纯小数0.57826,那么5是十分位,位阶是1/10;7是百分位,位阶是1/100;8是千分位,位阶是1/1000……,这些位阶分母的关系是10^1、10^2、10^3……,现假设每一位的序列是{S1、S2、S3、……、Sn},在这里就是5、7、8、2、6,而这个纯小数就可以这样表示:n = S1 * ( 1 / ( 10 ^ 1 ) ) + S2 * ( 1 / ( 10 ^ 2 ) ) + S3 * ( 1 / ( 10 ^ 3 ) ) + …… + Sn * ( 1 / ( 10 ^ n ) )。把这个公式推广到b进制纯小数中就是这样:
n = S1 * ( 1 / ( b ^ 1 ) ) + S2 * ( 1 / ( b ^ 2 ) ) + S3 * ( 1 / ( b ^ 3 ) ) + …… + Sn * ( 1 / ( b ^ n ) )
天哪,可恶的数学,我怎么快成了数学老师了!没办法,为了广大编程爱好者的切身利益,喝口水继续!现在一个二进制纯小数比如0.100101011就应该比较好理解了,这个数的位阶序列就因该是1/(2^1)、1/(2^2)、1/(2^3)、1/(2^4),即0.5、0.25、0.125、0.0625……。乘以S序列中的1或着0算出每一项再相加就可以得出原数了。现在你的基础知识因该足够了,再回过头来看0.45这个十进制纯小数,化为该如何表示呢?现在你动手算一下,最好不要先看到答案,这样对你理解有好处。
我想你已经迫不及待的想要看答案了,因为你发现这跟本算不出来!来看一下步骤:1 / 2 ^1位(为了方便,下面仅用2的指数来表示位),0.456小于位阶值0.5故为0;2位,0.456大于位阶值0.25,该位为1,并将0.45减去0.25得0.206进下一位;3位,0.206大于位阶值0.125,该位为1,并将0.206减去0.125得0.081进下一位;4位,0.081大于0.0625,为1,并将0.081减去0.0625得0.0185进下一位;5位0.0185小于0.03125,为0……问题出来了,即使超过尾数的最大长度23位也除不尽!这就是著名的浮点数精度问题了(浮点十进制值通常没有完全相同的二进制表示形式。这是 CPU 所采用的浮点数据表示形式的副作用。为此,可能会经历一些精度丢失,并且一些浮点运算可能会产生意外的结果。)。不过我在这里不是要给大家讲《数值计算》,用各种方法来提高计算精度,因为那太庞杂了,恐怕我讲上一年也理不清个头绪啊。我在这里就仅把浮点数表示法讲清楚便达到目的了。
OK,我们继续。嗯,刚说哪了?哦对对,那个数还没转完呢,反正最后一直求也求不尽,加上前面的整数部算够24位就行了:1111011.01110100101111001。某BC问:“不是23位吗?”我:“倒,不是说过了要把第一个1去掉吗?当然要加一位喽!”现在开始向左移小数点,大家和我一起移,众:“1、2、3……”好了,一共移了6位,6加上127得131(怎么跟教小学生似的?呵呵~),二进制表示为:10000101,符号位为……再……不说了,越说越啰嗦,大家自己看吧:
0 10000101 11101101110100101111001
42 F6 E9 79
79 E9 F6 42
下面再来讲如何将纯小数转化为十六进制。对于纯小数,比如0.0456,我们需要把他规格化,变为1.xxxx * (2 ^ n )的型式,要求得纯小数X对应的n可用下面的公式:
n = int( 1 + log (2)X );
0.0456我们可以表示为1.4592乘以以2为底的-5次方的幂,即1.4592 * ( 2 ^ -5 )。转化为这样形式后,再按照上面第二个例子里的流程处理:
1. 01110101100011100010001
去掉第一个1
01110101100011100010001
-5 + 127 = 122
0 01111010 01110101100011100010001
最后:
11 C7 3A 3D
另外不得不提到的一点是0.0f对应的十六进制是00 00 00 00,记住就可以了。