内容:
1、分配 Driver(Cluster);
2、为Application分配资源;
3、两种不同的资源分配方式彻底解密;
4、Spark资源分配的思考;
Spark最最重要的,这个内容每个IMF成员必须掌握,后面的性能优化全部跟这个有关。
==========任务调度与资源调度的区别============
1、任务调度是通过DAGScheduler、TaskScheduler、SchedulerBackend等进行的作业调度;
2、资源调度是指应用程序如何获取资源;
3、任务调度是在资源调度的基础上进行的,没有资源调度,任务调度就无从谈起,就成为了无源之水、无本之木;
4、Spark资源调度算法的方法是:schedule()
==========资源调度内幕天机解密============
1、因为Master负责资源管理和调度,所以资源调度的方法Schedule位于Master.scala类中,当注册程序或者资源发生改变的时候,都会导致schedule的调用,例如注册程序的时候:
case RegisterApplication(description, driver) => {
// TODO Prevent repeated registrations from some driver
if (state == RecoveryState.STANDBY) {
// ignore, don't send response
} else {
logInfo("Registering app " + description.name)
val app = createApplication(description, driver)
registerApplication(app)
logInfo("Registered app " + description.name + " with ID " + app.id)
persistenceEngine.addApplication(app)
driver.send(RegisteredApplication(app.id, self))
schedule()
}
}
2、schedule()调用时机:每次有新的应用程序或者集群资源状态发生改变的时候(包括Executor增加或者减少、Worker增加或者减少等);
3、当前Master必须是Alive的状态才能进行资源的调度,如果不是Alive的状态,会直接返回,也就是说,Standby Master不会进行Application的资源调用;
4、使用Random.shuffle把Master中保留的集群中所有Worker的信息随机打乱,其算法内部是循环随机交换所有Worker在Master缓存数据结构中的位置;
5、接下来要判断所有Worker中哪些Worker是ALIVE级别的Worker,ALIVE才能参与资源的分配工作;
6、当Spark submit指定Driver在Cluster模式的情况下,此时driver会加入waitingDrivers等待列表中,在每个Driver的DrvierInfo中的driverDescription中有要启动Driver时候对Worker的内存及Cores的要求等内容(这个Driver如果设置了supervise,则drvier挂掉之后可以自动重启);
private[deploy] case class DriverDescription(
jarUrl: String,
mem: Int,
cores: Int,
supervise: Boolean,
command: Command) {
override def toString: String = s"DriverDescription (${command.mainClass})"
}
7、然后在符合资源要求的基础上用随机打乱的一个Worker来启动Driver,Master发指令给远程的Worker让远程的Worker启动driver,然后driver的state就编程RUNNING了;
private def launchDriver(worker: WorkerInfo, driver: DriverInfo) {
logInfo("Launching driver " + driver.id + " on worker " + worker.id)
worker.addDriver(driver)
driver.worker = Some(worker)
worker.endpoint.send(LaunchDriver(driver.id, driver.desc))//Master发指令给Worker启动对应的driver
driver.state = DriverState.RUNNING
}
8、先启动Drvier才会发生后续的一切的资源调度的模式;
/**
* Schedule the currently available resources among waiting apps. This method will be called
* every time a new app joins or resource availability changes.
*/
private def schedule(): Unit = {
if (state != RecoveryState.ALIVE) { return }
// Drivers take strict precedence over executors
val shuffledWorkers = Random.shuffle(workers) // Randomization helps balance drivers
for (worker <- shuffledWorkers if worker.state == WorkerState.ALIVE) {
for (driver <- waitingDrivers) {
if (worker.memoryFree >= driver.desc.mem && worker.coresFree >= driver.desc.cores) {
launchDriver(worker, driver)
waitingDrivers -= driver
}
}
}
startExecutorsOnWorkers()
}
8、spark默认为应用程序启动Executor的方式是采用FIFO(先进先出,排队)的方式,也就是说所有提交的应用程序都是放在调度的等待队列中的,先进先出,只有满足了前面应用程序的资源分配基础上,才能够满足下一个应用程序资源的分配;
9、为应用程序具体分配Executor之前要判断应用程序是否还需要分配cores,如果不需要,则不会为应用程序分配Executor;
10、具体分配Executor之前要对要求Worker必须是ALIVE状态且必须满足Application对每个Executor的内存和cores 的要求,并且在此基础上进行排序,把cores多的放在前面
在FIFO情况下默认是spreadOutApps来让应用程序尽可能多的运行在所有的node上
11、为应用程序分配Executors有两种方式,第一种方式是尽可能在集群的所有Worker上分配Executor,这种方式往往会带来潜在的更好的数据本地性;
/**
* Schedule and launch executors on workers
*/
private def startExecutorsOnWorkers(): Unit = {
// Right now this is a very simple FIFO scheduler. We keep trying to fit in the first app
// in the queue, then the second app, etc.
for (app <- waitingApps if app.coresLeft > 0) {
val coresPerExecutor: Option[Int] = app.desc.coresPerExecutor
// Filter out workers that don't have enough resources to launch an executor
val usableWorkers = workers.toArray.filter(_.state == WorkerState.ALIVE)
.filter(worker => worker.memoryFree >= app.desc.memoryPerExecutorMB &&
worker.coresFree >= coresPerExecutor.getOrElse(1))
.sortBy(_.coresFree).reverse
val assignedCores = scheduleExecutorsOnWorkers(app, usableWorkers, spreadOutApps)
// Now that we've decided how many cores to allocate on each worker, let's allocate them
for (pos <- 0 until usableWorkers.length if assignedCores(pos) > 0) {
allocateWorkerResourceToExecutors(
app, assignedCores(pos), coresPerExecutor, usableWorkers(pos))
}
}
}
12、具体在集群上分配cores的时候,会尽可能满足我们的要求;
13、如果是每个Worker下面只能够为当前的应用程序分配一个Executor的话,每次只分配一个Core!
var coresToAssign = math.min(app.coresLeft, usableWorkers.map(_.coresFree).sum)
// If we are launching one executor per worker, then every iteration assigns 1 core
// to the executor. Otherwise, every iteration assigns cores to a new executor.
if (oneExecutorPerWorker) {
assignedExecutors(pos) = 1
} else {
assignedExecutors(pos) += 1
}
假设4个Worker,spreadOut时候,会一轮一轮为executor分配core的,一个一个,循环分配,直到资源耗尽
14、然后就是分配了,准备好具体要为当前应用程序分配的Executor信息后,具体Master要通过远程通信发指令给Worker来具体启动ExecutorBackEnd进程;
// Now that we've decided how many cores to allocate on each worker, let's allocate them
for (pos <- 0 until usableWorkers.length if assignedCores(pos) > 0) {
allocateWorkerResourceToExecutors(
app, assignedCores(pos), coresPerExecutor, usableWorkers(pos))
}
/**
* Allocate a worker's resources to one or more executors.
* @param app the info of the application which the executors belong to
* @param assignedCores number of cores on this worker for this application
* @param coresPerExecutor number of cores per executor
* @param worker the worker info
*/
private def allocateWorkerResourceToExecutors(
app: ApplicationInfo,
assignedCores: Int,
coresPerExecutor: Option[Int],
worker: WorkerInfo): Unit = {
// If the number of cores per executor is specified, we divide the cores assigned
// to this worker evenly among the executors with no remainder.
// Otherwise, we launch a single executor that grabs all the assignedCores on this worker.
val numExecutors = coresPerExecutor.map { assignedCores / _ }.getOrElse(1)
val coresToAssign = coresPerExecutor.getOrElse(assignedCores)
for (i <- 1 to numExecutors) {
val exec = app.addExecutor(worker, coresToAssign)
launchExecutor(worker, exec)
app.state = ApplicationState.RUNNING
}
}
15、紧接着给我们应用程序的Driver发送一个ExecutorAdded的信息
private def launchExecutor(worker: WorkerInfo, exec: ExecutorDesc): Unit = {
logInfo("Launching executor " + exec.fullId + " on worker " + worker.id)
worker.addExecutor(exec)
worker.endpoint.send(LaunchExecutor(masterUrl,
exec.application.id, exec.id, exec.application.desc, exec.cores, exec.memory))
exec.application.driver.send(
ExecutorAdded(exec.id, worker.id, worker.hostPort, exec.cores, exec.memory))
}
王家林老师名片:
中国Spark第一人
新浪微博:http://weibo.com/ilovepains
微信公众号:DT_Spark
博客:http://blog.sina.com.cn/ilovepains
手机:18610086859
QQ:1740415547
本文出自 “一枝花傲寒” 博客,谢绝转载!