[置顶] HBase写入性能分析及改造—multi-thread flush and compaction(约能提高两到三倍吞吐量,带压缩测试)

首先描述一下现象

最近对HDFS底层做了许多优化,包括硬件压缩卡,内存盘及SSD。

在出测试报告时发现老问题,HBase写入速度不稳定,这个大家都习以为常了吧,就是压测时,只要row size稍小一点,不管你怎么压,HBase的RegionServer总是不愠不火特淡定。有些人就怀疑是磁盘到瓶颈了?还有些人怀疑是不是GC拖累了?

总之网上大部分测试都是黑盒测试嘛,大家也就乱猜呗。

下面我仔细来分析下原因,并解决掉问题,详细的测试数据在http://blog.csdn.net/kalaamong/article/details/7290192,对数据感兴趣的同学可以直接跳过下面的内容。

大概全套问题都解决之后写入通量提高两到三倍。


在压测时HRegionServer的Handler很多情况下都被卡在reclaimMemStoreMemory()

 ps:这个方法在region数目过多时淘宝庄庄说过这个问题,会影响put速度。

因为他每次都会调这一段代码,当有几千上万个region时。。。。。每次put都检查自然有问题,不过这个相对于后面的事情是小问题了,先放这。

public long getGlobalMemStoreSize() {
    long total = 0;
    for (HRegion region : onlineRegions.values()) {
      total += region.memstoreSize.get();
    }
    return total;
  }


 

下面这段展示了这个方法。

public synchronized void reclaimMemStoreMemory() {
    if (isAboveHighWaterMark()) {
      lock.lock();
      try {
        while (isAboveHighWaterMark() && !server.isStopped()) {
          wakeupFlushThread();
          try {
            // we should be able to wait forever, but we've seen a bug where
            // we miss a notify, so put a 5 second bound on it at least.
            flushOccurred.await(5, TimeUnit.SECONDS);
          } catch (InterruptedException ie) {
            Thread.currentThread().interrupt();
          }
        }
      } finally {
        lock.unlock();
      }
    } else if (isAboveLowWaterMark()) {
      wakeupFlushThread();
    }
  }


 

其中flushOccurred.await(5, TimeUnit.SECONDS);这一部分将所有写入线程都block了,但这也不完全怪flush做得慢,我们实际压测时,flush还是很快的,只是compact不及时,flush就会被阻塞。

参这篇jira的内容

https://issues.apache.org/jira/browse/HBASE-2646

https://issues.apache.org/jira/browse/HBASE-2981 

https://issues.apache.org/jira/browse/HBASE-2832

run YCSB写入压测时,HBase有明显的停顿,写入性能有跳变。在EMC一篇关于hypertable和HBase的测试中,提到HBase的性能被GC所累,我觉得他们有可能错误地把

flush和compaction中的停顿当作JAVA gc了。因为在给RegionServer分配24GB内存时,GC的时间很短(毫秒级)。

 第一步:为flush添加线程池

HBase flush memorystore时是由一个线程顺序将数据

hbase.hstore.blockingStoreFiles ()同时flush时会获取Region writeLock的writeLock().来做snapshot,而所有的修改包括mult,put,delete都要获取readlock,

所以写入操作与flush大部分代码都只能串行执行,并不能像流水号线一样边写入边flush。所以压测时就会一顿一顿的。

 

当然这是其中一个原因,我们先来解决这个原因,将flush变成多线程并行flush再来探讨另一个导致flush无法并行执行的原因。

https://issues.apache.org/jira/browse/HBASE-2832

于是我仿照Jonathan的patch在90.4上实现了muti thread memstore flush,Jonathan的实现目前用于trunk,且只针对上面我提到的原因做了改进。

实际测试时并不能达到并行flush的效果。

 这一段的主要修改是在MemStoreFlusher 中添加了如下代码,同时每处flush都调用performFlush(HRegion)。

FlushRegionHandler的代码比较多,详细见patch,我会贴到git上https://github.com/ICT-Ope,也可以到微博上@我。

ExecutorService executor;   public void performFlush(HRegion r) {     executor.submit(new FlushRegionHandler(this.server, r,this));   }


 第二步:修改HLog 获取sequenceId时的锁类型

这样做之后,遇到阻碍并行flush的第二个问题,HLog。但测试时发现一次flush的region并没有增加,依然没有效果。

我怀疑HLog中每次flush部分的检查可能还是限制了并发。并在regionserver.wal.HLog.startCacheFlush()中的一段代码找出了问题。
PS:即使用户在每次put时设定不写HLog,HLog也是要在每次flush之后检查有效log的位置,并roll log等操作也不会因此关闭。(测试中每次put时设定不写HLog

在regionserver.wal.HLog中有如下代码:

  /**
   * By acquiring a log sequence ID, we can allow log messages to continue while
   * we flush the cache.
   *
   * Acquire a lock so that we do not roll the log between the start and
   * completion of a cache-flush. Otherwise the log-seq-id for the flush will
   * not appear in the correct logfile.
   *
   * @return sequence ID to pass {@link #completeCacheFlush(byte[], byte[], long, boolean)}
   * (byte[], byte[], long)}
   * @see #completeCacheFlush(byte[], byte[], long, boolean)
   * @see #abortCacheFlush()
   */
  public long startCacheFlush() {
    this.cacheFlushLock.lock();
    return obtainSeqNum();
  }

这部分被HRegion的internalFlushcache调用,用以得到当前HLog的sequenceId,不得不说这个lock加得太大了,一个RegionServer共用一个HLog啊。。。

此处无非是得到log sequence 然后在store internalFlushcache时写到文件里,hlog roll时从而得知哪段已经写到磁盘了。

所以此处的cacheFlushLock 应当改为ReentrantReadWriteLock,并在此处只加readLock。rolllog时加writeLog。

   this.updatesLock.writeLock().lock();//此处已经将本Region所有修改操作lock了。
    final long currentMemStoreSize = this.memstoreSize.get();
    List<StoreFlusher> storeFlushers = new ArrayList<StoreFlusher>(stores.size());
    boolean compactionRequested = false;   
try {
sequenceId = (wal == null)? myseqid: wal.startCacheFlush();//在这,上面那个方法又加了个RegionServer级的锁,且还不是RW锁。
      completeSequenceId = this.getCompleteCacheFlushSequenceId(sequenceId);

      for (Store s : stores.values()) {
        storeFlushers.add(s.getStoreFlusher(completeSequenceId));
      }

      // prepare flush (take a snapshot)
      for (StoreFlusher flusher : storeFlushers) {
        flusher.prepare();
      }

做以上修改之后HBase多线程flush没有问题了。下面是第三步:

第三步:为compact添加线程池,顺便注释掉split部分。

不过随之而来的另外一个问题就是当flush频繁之后系统吞吐量显著提高,但生成的小文件数量变多,compaction的负担就大了。

由于下面这段代码,compact忙不过来时,flush也是会被阻塞的,如此写入也就被阻塞了。

private boolean flushRegion(final FlushRegionEntry fqe) {
    HRegion region = fqe.region;
    if (!fqe.region.getRegionInfo().isMetaRegion() &&
        isTooManyStoreFiles(region)) {
      if (fqe.isMaximumWait(this.blockingWaitTime)) {
        LOG.info("Waited " + (System.currentTimeMillis() - fqe.createTime) +
          "ms on a compaction to clean up 'too many store files'; waited " +
          "long enough... proceeding with flush of " +
          region.getRegionNameAsString());
      } else {
当StoreFile数到7(默认),flush就要等compact把StoreFile压到一个文件里。如此单线程的compact又成为瓶颈阻碍HBase的写入吞吐量了。所以最后又把compact也改成了线程池,同时顺便把split的代码给注释掉了。然后把blockflush的storefile数目从7改到两千,这样写入流水基本顺畅了。最后的效果是HBase压测时cpu一直利用充分。HBase中 multi flush compact的流水线基本并行化了。整个系统的吞吐量大幅度提升。此时当打开gz软件压缩(no native,用native压时,压缩是单线程的)时,系统的cpu利用率才充分一些。
[置顶] HBase写入性能分析及改造—multi-thread flush and compaction(约能提高两到三倍吞吐量,带压缩测试)_第1张图片

第四步:为HBaseClient添加到RegoinServer的连接池。

但即使如此,cpu也没有用到100%啊,既然是压测那一定要达到某个硬件瓶颈才算压出效果吧。此时突然意识到HBaseClient端的一个问题:所有线程共用一个socket连接与RS交换数据,so果端修改了HBaseClient的代码使用了连接池。(线上系统如非某应用独占,最好不要改这个地方)。改完之后用70个线程压测时总算达到了我要的效果,RS 16核2.4GHz的CPU满载(no compression,multi-thread flush and compact)。更详细的测试报告我将会在后续的博文中放出,测试的效果大概是写入吞吐量有两到三倍提升。

[置顶] HBase写入性能分析及改造—multi-thread flush and compaction(约能提高两到三倍吞吐量,带压缩测试)_第2张图片

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

你可能感兴趣的:(多线程,测试,hbase,byte,patch,compression)