二进制方法中,只需要移位(<<和>>)和加减操作(+和-),不像欧几里德算法中需要乘法和除法运算。虽然算法效率更高,但是程序的可读性和可维护性差一些。
如果设d=gcd(u,v) = u.x + v.y, 本算法涉及到六种操作:
1)已知ext_gcd(u,v)如何求ext_gcd(u,2v)=u'.x' + v'.y',其中u为奇数,v可奇可偶,d=gcd(u,v)为奇数;
2)已知ext_gcd(u,v)如何求ext_gcd(2u,v)=u'.x' + v'.y',其中v为奇数,u可奇可偶,d=gcd(u,v)为奇数;
3)已知ext_gcd(u-v,v)如何求ext_gcd(u,v)=u'.x' + v'.y';
4)已知ext_gcd(u,u-v)如何求ext_gcd(u,v)=u'.x' + v'.y';
5)已知u/2^c = v = d(c为大于0的整数),如何求ext_gcd(u,v)=u.x' + v.y';
6)已知u= v/2^c = d(c为大于0的整数),如何求ext_gcd(u,v)=u.x' + v.y'.
其中第1)种操作比较麻烦,第2)种操作只需要在第1)种操作的基础上将u和v交换一下。下面介绍一下第1)种操作的原理:
在第1)操作中,因为d=gcd(u,2v)=gcd(u-v,v)=(u-v)x+v(x+y),设u1=u-v,x1=x,v1=v,y1=x+y,即问题转化为已知d=u1.x1+u1.y1,求ext_gcd(u,2v)=u.x' + (2v)y'=d;
如果y为偶数,显然可以采用这样一组值:x'=x,y'=y/2;但是如果y为奇数,则需要将d表示为d=u1(x1+v1.k) + v1(y1-u1.k),其中k为正奇数1,3,5....,找到这样的k,满足x' = x +v.k和y'=(y-u.k)/2都不为0。
第3)种操作比较简单,因为d=gcd(u-v,v) = (u-v)x + vt = ux + v(y-x),即x'=x,y'=y-x;
第4)种操作类似,因为d=gcd(u,u-v) = ux + (u-v)t = u(x+y) - vy,即x'=x+y,y'=-y;
第5)种操作,可以得到d=v=u + (1-2^c).v,即x'=1,y'=1-2^c;
第6)种操作只需要在第5)种操作的基础上将u和v交换一下。
在下面的实现中,只有上面第2)和6)种操作需要改变v和y的符号。
import java.util.Stack; /** * * @author ljs 2011-5-19 * * solve extended gcd using Binary Method * */ public class ExtGCD_Binary { /** * caculate x,y to satisfy Bezout Identity: u.x + v.y = gcd(u,v) * @param u * @param v * @return {d,x,y} for: d = u.x + v.y; */ public static int[] extGCDBinary(int u,int v){ u=(u<0)?-u:u; v=(v<0)?-v:v; if(u==0) return new int[]{v,0,1}; if(v==0) return new int[]{u,1,0}; int k=0; while((u & 0x01)==0 && (v & 0x01) == 0){ u>>=1; //divide by 2 v>>=1; k++; } //with respect to d=gcd(u,v)=u.s+v.t /* the operation type is defined as: 1: c, u / 2^c (push two numbers to stack: first push c, then push the op number 1) 2: c, v / 2^c (push two numbers to stack: first push c, then push the op number 2) 3: gcd(u-v, v) (only push the op number 3 to stack) 4: gcd(u, u-v) (only push the op number 4 to stack) */ Stack<Integer> ops= new Stack<Integer>(); //at this time, there is at least one number is odd between m and n int t=-v; //set it negative for later comparison of (t>0) if((v & 0x01)==1){ //if v is odd t = u; } //process t as a possible even number boolean firstNoOp = true; while(t != 0){ if(firstNoOp) { firstNoOp = false; }else{ if(t>0) ops.push(3); else ops.push(4); } int c=0; while((t & 0x01)==0){ //do until t is not even t>>=1; c++; } if(t>0) {//u > v (the max is replaced by |t|) u=t; if(c>0) { ops.push(c); ops.push(1); } }else{ //u<v (the max is replaced by |t|) v=-t; if(c>0){ ops.push(c); ops.push(2); } } //now u and v are all odd, then u-v is even t = u-v; } int d = u; //the following steps are to caculate x,y in d=u.x + v.y int x=1,y=0; //special processing for the last operation if(!ops.isEmpty()){ //e.g. for input u=3,v=3, then ops is empty, d=3 int op = ops.pop(); int c = ops.pop(); //op number 3 and 4 can not be the last step since: u-v = v, then v is even; or u=u-v, then u=0; //both are not possible int tmp = 1<<c; if(op == 1){ x = 1; y = 1- tmp; u = v; for(int i=0;i<c;i++) u <<= 1; }else if(op == 2){ x = 1- tmp; y = -1; v = -u; for(int i=0;i<c;i++) v <<= 1; } } while(!ops.isEmpty()){ int op = ops.pop(); switch(op){ case 1:{ int c = ops.pop(); for(int i=0;i<c;i++){ if((x & 0x01)==0){ //if x is even x >>= 1; }else{ y += u; int tmp = x - v; while(y ==0 || tmp ==0){ y += (u<<1); //*2 tmp -= (v<<1); //*2 }; x = tmp >>1; } u <<= 1; } break; } case 2:{ int c = ops.pop(); for(int i=0;i<c;i++){ if((y & 0x01)==0){ //if y is even y >>= 1; }else{ x += v; int tmp = y-u; while(x ==0 || tmp ==0){ x += (v<<1); //*2 tmp -= (u<<1); //*2 }; y = tmp >>1; } v <<= 1; } y = -y; v = -v; break; } case 3: y -= x; u += v; break; case 4: x += y; v = u - v; y = -y; break; } } //e.g. gcd(1,4) y = (v<0)?-y:y; for(int i=0;i<k;i++) d <<=1; return new int[]{d,x,y}; } public static void print(int m,int n,int[] extGCDResult){ m = (m<0)?-m:m; n = (n<0)?-n:n; System.out.format("extended gcd of %d and %d is: %d = %d.{%d} + %d.{%d}%5s%n",m,n,extGCDResult[0],m,extGCDResult[1],n,extGCDResult[2],(m*extGCDResult[1] + n * extGCDResult[2] == extGCDResult[0])?"OK":"WRONG!!!"); } public static void main(String[] args) { int m = -18; int n= 12; print(m,n,extGCDBinary(m,n)); //co-prime m = 15; n= 28; print(m,n,extGCDBinary(m,n)); m = 6; n= 3; print(m,n,extGCDBinary(m,n)); m = 6; n= 3; print(m,n,extGCDBinary(m,n)); m = 6; n= 0; print(m,n,extGCDBinary(m,n)); m = 0; n= 6; print(m,n,extGCDBinary(m,n)); m = 0; n= 0; print(m,n,extGCDBinary(m,n)); m = 1; n= 1; print(m,n,extGCDBinary(m,n)); m = 3; n= 3; print(m,n,extGCDBinary(m,n)); m = 2; n= 2; print(m,n,extGCDBinary(m,n)); m = 1; n= 4; print(m,n,extGCDBinary(m,n)); m = 4; n= 1; print(m,n,extGCDBinary(m,n)); m = 10; n= 14; print(m,n,extGCDBinary(m,n)); m = 14; n= 10; print(m,n,extGCDBinary(m,n)); m = 10; n= 4; print(m,n,extGCDBinary(m,n)); m = 273; n= 24; print(m,n,extGCDBinary(m,n)); m = 120; n= 23; print(m,n,extGCDBinary(m,n)); } }