DP+计算几何(线段相交判断)
题目大意:一个人从最高点出发,从高到低有很多区间,这个人必须通过全部的区间到达最底,问最短的路径是多少?
设dp[i][side]表示到达第i层左(右)端点的最短距离,然后特殊处理一下最后一层就OK了
#include <iostream> #include <cstdio> #include <cstdlib> #include <algorithm> #include <functional> #include <vector> #include <map> #include <cstring> #include <string> #include <list> #include <set> #include <bitset> #include <cctype> #include <cmath> #include <ctime> #include <numeric> #include <utility> #include <stack> #include <queue> #include <deque> #include <iomanip> #include <cassert> #define pb push_back #define mp make_pair #define Maxn 1100 #define fi first #define se second using namespace std; typedef pair<double, double> pii; const double eps=1e-8; const double inf=1e300; int n; double dp[Maxn][2]; pii seg[Maxn][2]; inline double getdis(pii a, pii b) { return sqrt((a.fi-b.fi)*(a.fi-b.fi)+(a.se-b.se)*(a.se-b.se)); } inline int sign(double x) { return x<-eps?-1:x>eps; } pii intersert(pii A, pii B, double y) { double dx = A.fi - B.fi; double dy = A.se - B.se; return mp(A.fi + (y-A.se)*dx/dy, y); } bool leftturn(pii p, pii a, pii b) { double x1 = (a.fi-p.fi), y1 = (a.se-p.se); double x2 = (b.fi - p.fi), y2 = (b.se-p.se); return sign(x1*y2-x2*y1)>0; } bool noRightTurn(pii p, pii a, pii b) { double x1 = (a.fi-p.fi), y1 = (a.se-p.se); double x2 = (b.fi - p.fi), y2 = (b.se-p.se); return sign(x1*y2 - x2*y1)>=0; } int main() { double a, b, c; while (~scanf("%d", &n), n) { scanf("%lf%lf", &a, &b); seg[0][0] = mp(a, b); for (int i=1; i<=n; i++) { scanf("%lf%lf%lf", &c, &a, &b); seg[i][0] = mp(a, c); seg[i][1] = mp(b, c); } dp[n][0] = dp[n][1] = 0; int j; for (int i=n-1; i>=0; i--) { for (int side=0; side<2; side++) { dp[i][side] = inf; pair<pii,pii> next = mp(seg[i+1][0], seg[i+1][1]); pii pt = seg[i][side]; for (j=i+1; j<=n; j++) { if (leftturn(pt, seg[j][1], next.fi) || leftturn(pt, next.se, seg[j][0])) break; if (noRightTurn(pt, next.fi, seg[j][0])) { next.fi = seg[j][0]; dp[i][side] = min(dp[i][side], getdis(pt, next.fi)+dp[j][0]); } if (noRightTurn(pt, seg[j][1], next.se)) { next.se = seg[j][1]; dp[i][side] = min(dp[i][side], getdis(pt, next.se)+dp[j][1]); } } if (j > n) { double y = seg[n][0].se; next.fi = intersert(pt, next.fi,y); next.se = intersert(pt, next.se, y); if (pt.fi < next.fi.fi) dp[i][side] = min(dp[i][side], getdis(pt, next.fi)); else if (pt.fi > next.se.fi) dp[i][side] = min(dp[i][side], getdis(pt, next.se)); else dp[i][side] = min(dp[i][side], pt.se - y); } if (i == 0) break; } } printf("%.10f\n", dp[0][0]); } return 0; }