帮同学妹妹弄的作业。。。
以后可以参考

#include  < iostream >
#include 
< vector >
#include 
< string >
#include 
< math.h >
#include 
< iomanip >
#include 
< stdlib.h >
#include 
< algorithm >
using   namespace  std;

#define  HeadSTUDENT int


// 以下是数据类型的定义

enum   Status {OK, ERROR} ;

typedef 
struct
{
    
char            number[10];
    
char            name[8];
    
char            sex[3];
    
int                age;
    
char            place[20];
}
STUDENT;
typedef 
struct  BinaryTreeNode
{    
    STUDENT         data;
    BinaryTreeNode    
*LChild;
    BinaryTreeNode    
*RChild;
}
 BinaryTree;


typedef 
struct  
{
    BinaryTreeNode    
*ptr;
    
bool        B; //true代表左子树,false代表右子树
}
 SType;


typedef 
struct   // StackElement
{    
    SType            
*element;
    
int            top;
    
int            MaxSize;
}
 Stack;

void  DigitalToString( char  str[], int  n)
{
    
char    temp;
    
char    k=1;
    
int    i=0;
    
while (n && i<80)
    
{
        k
=n%10+48;
        n
=n/10;
        str[i]
=k;
        i
++;
    }

    str[i]
='\0';

    
int len=strlen(str);
    
for (i=0;i<len/2;i++)
    
{
        temp
=str[i];
        str[i]
=str[len-i-1];
        str[len
-i-1]=temp;
    }

}



void  OutputLevelOrderTL(BinaryTreeNode  * BT)
{// 从左至右,从上至下按层次输出一棵二叉树
    typedef struct 
    
{
        BinaryTreeNode    
*ptr;
    }
 Node_Ptr;

    Node_Ptr        temp,
*element;
    BinaryTreeNode     
*p;
    
int        MaxSize=50
    
int        pagewidth=80;
    
int        node_last_position;
    
int        High;

    element 
= new Node_Ptr [MaxSize+1];        //定义一个用于存放二叉树结点指针的数组

    
for (int i=1;i<MaxSize;i++)                //对指针数组初始化,初值设为NULL
        element[i].ptr=NULL;
    p 
= BT;
    temp.ptr 
= p;
    
if (p) element[1]=temp;        
    
for (int i=1;i<MaxSize/2;i++)    //将二叉树中的每个结点指针以顺序存储结构存放到数组中,并同时求取最大结点的编号
    {
        p
=element[i].ptr;
        
if (p)
        
{
            
if (p->LChild)     
            
{
                temp.ptr 
= p->LChild;
                element[
2*i]=temp;

                node_last_position
=2*i;
            }

            
if (p->RChild)     
            
{
                temp.ptr 
= p->RChild;
                element[
2*i+1]=temp;
                node_last_position
=2*i+1;
            }

        }

    }


    cout
<<endl;
    
int position_data[32]={0,
        
40,  
        
20,                40,  
        
10,        20,        20,        20,  
        
6,  10,  1010,  10,  1010,  10,  
        
3,5,5,55,5,5,55,55,55,55,5}
;
    
int        kk,k;
    
int        startnum,endnum;
    
int        startnum1,endnum1;
    
int        len, curlenharf,prelenharf,templen,lenharf;
    
int        num_space;
    
char    str[80];
    
char    emptystr[42]={""};
    
char    space[2]=" ";
    
char    line[3]="";
    
char    prechar[42];                    //prechar中记载当前输入出项的字符串
    char    prespace[42];                    //prespace中记载当前输入出项前面的空格串
    char    postspace[42];                    //postspace中记载当前输入出项后面的空格串

    cout
<<"                                 "<<"根结点BT"<<endl;
    cout
<<"                                   "<<"  ↘"<<endl;

    High
=log((double)node_last_position)/log(2.0)+1;
    startnum
=1;                                //startnum中记载当前层中起始结点编号
    startnum1=2;                            //startnum中记载当前层中起始结点编号
    for (int i=1;i<=High;i++)
    
{
        endnum
=pow(2.0,i)-1;                    //endnum中记载当前层中最大结点编号
        if (endnum>node_last_position)
            endnum
=node_last_position;
        prelenharf
=0;
        
//输出第一个数据项
        for(k=startnum;k<=endnum;k++)
        
{
            templen
=1;    
            p
=element[k].ptr;
            
if (p)
            
{
                DigitalToString(str, p
->data.age);
                len
=strlen(str);
                curlenharf
=len/2;
                
if (!(len%2&& (prelenharf%2)==(curlenharf%2)&&(k%2))
                    templen
-=2;
                
if ((prelenharf%2)!=(curlenharf%2)&&(k%2))
                    templen
--;
                num_space
=position_data[k]-curlenharf-prelenharf-templen;
            }

            
else
                num_space
=position_data[k]-templen-2;
            strcpy(prechar,emptystr);                        
//前导空格串的初值为空串            
            for (kk=1;kk<=num_space;kk++)                    //用字符串联接方式生成前导空格串prechar
                strcat(prechar,space);
            prelenharf
=curlenharf;
            
if (p) 
                cout
<<prechar<<p->data.age;
            
else
                cout
<<prechar<<"   ";                        //" 0 "
        }

        cout
<<endl;
        
//输出第二个数据项
        prelenharf=0;
        
for(k=startnum;k<=endnum;k++)
        
{
            templen
=1;    
            p
=element[k].ptr;
            
if (p)
            
{
                len
=strlen(p->data.name);
                curlenharf
=len/2;
                
if (!(len%2&& (prelenharf%2)==(curlenharf%2)&&(k%2))
                    templen
-=2;
                
if ((prelenharf%2)!=(curlenharf%2)&&(k%2))
                    templen
--;
                num_space
=position_data[k]-curlenharf-prelenharf-templen;
            }

            
else
                num_space
=position_data[k]-templen-2;

            strcpy(prechar,emptystr);                        
//前导空格串的初值为空串
            for (kk=1;kk<=num_space;kk++)                    //用字符串联接方式生成前导空格串prechar
                strcat(prechar,space);
            prelenharf
=curlenharf;
            
if (p) 
                cout
<<prechar<<p->data.name ;
            
else
                cout
<<prechar<<"   ";                        //" ^ "
        }

        startnum
=endnum+1;
        cout
<<endl;

        
//以下程序是完成分支结的输出
        int position_line[32]={0,
            
20,  
            
19,                     19,  
            
9,        9,            18,          9,  
            
5,    3,    10,      3,  10,  3,  10,  3,  
            
2,1,  4,1,4,1,  4,1,    41,4,14,1,4,1}
;
        
if (i<High)
        
{
            endnum1
=pow(2.0,i+1)-1;                        //endnum中记载第i层下面的分枝线层中最大结点编号
            for(k=startnum1;k<=endnum1;k++)
            
{
                strcpy(prechar,emptystr);                
//前导空格串的初值为空串            
                for (kk=1;kk<=position_line[k];kk++)    //用字符串联接方式生成前导空格串prechar==startnum1
                    if (!(k%2))
                        strcat(prechar,space);            
//形成当前中第偶数个结点前的空格串
                    else
                        strcat(prechar,line);            
//形成当前中第奇数个结点前的"─"串

                
if (!(k%2)) 
                    cout
<<prechar;                        //当前中第偶数个结点前输出空格串
                else 
                
{
                    len
=strlen(prechar);
                    lenharf
=len/2;
                    
if ((element[k-1].ptr && element[k].ptr))        //当前分支左右均有结点
                    {
                        prechar[lenharf]
='';
                        cout
<<""<<prechar<<"";
                    }

                    
if ((element[k-1].ptr && !element[k].ptr))        //当前分支左边有结点,右边无结点
                    {
                        prechar[lenharf
-1]='\0';
                        cout
<<""<<prechar<<"";
                        strcpy(postspace,emptystr);
                        
for (kk=1;kk<=lenharf+1;kk++)
                            strcat(postspace,space);
                        cout
<<postspace;
                    }

                    
if ((!element[k-1].ptr && element[k].ptr))        //当前分支右边有结点,左边无结点
                    {
                        strcpy(prespace,emptystr);
                        
for (kk=1;kk<=lenharf+1;kk++)
                            strcat(prespace,space);
                        prechar[lenharf
-1]='\0';
                        cout
<<prespace<<""<<prechar<<"";
                    }

                    
if ((!element[k-1].ptr && !element[k].ptr))        //当前分支左右均无结点
                    {
                        strcpy(prespace,emptystr);
                        
for (kk=1;kk<=len;kk++)
                            strcat(prespace,space);
                        cout
<<prespace<<"    ";
                    }

                }

            }

            cout
<<endl;
            startnum1
=endnum1+1;
        }

    }

    cout
<<endl<<endl<<endl;
}



void  CreatStack(Stack  & S,  int  MaxStackSize)
{// 构造一个最大容量为MaxStackSize 的堆栈
    S.MaxSize = MaxStackSize;
    S.element 
= new SType[S.MaxSize];
    S.top 
=-1;
}


bool  IsEmpty(Stack  & S)
{// 判断堆栈S是否为空
    if (S.top == -1)   return true;
    
return  false;
}


bool  IsFull(Stack  & S)
{// 判断堆栈S是否为满
    if (S.top >= S.MaxSize-1)   return true;
    
return  false;
}

Status Push(Stack 
& S , SType  & x)
{// x进s栈,返回进栈后的状态值
    if (IsFull(S))   return ERROR;
    S.top
++;
    S.element[S.top] 
= x;
    
return OK;
}


Status Pop(Stack 
& S , SType  & x)
{// 将s栈顶的值取至x中,返回出栈后的状态值
    if (IsEmpty(S))   return ERROR;
    x 
= S.element[S.top];
    S.top
--;
    
return OK;
}


BinaryTreeNode   
* MakeNode(STUDENT  & x)    
{//构造结点
      BinaryTreeNode* newtree=new BinaryTreeNode;
      newtree
->data=x;
      
return newtree;
}


void  MakeBinaryTree(BinaryTreeNode  * root, BinaryTreeNode  * left, BinaryTreeNode  * right)
{// 联接root,left, right所指的结点指针为二叉树
    root->LChild=left;
     root
->RChild=right;
     
}


int   BinaryHeight(BinaryTreeNode   * BT) 
{// 返回二叉树的高度
    if (BT==NULL) return 0;
    
int HighL = BinaryHeight(BT ->LChild);
    
int HighR = BinaryHeight(BT ->RChild); 
    
if (HighL > HighR)  
        
return ++HighL;
    
else 
        
return ++HighR;
}


void  PreOrderN(BinaryTreeNode  * BT)
{//二叉树的前序遍历非递归算法
    Stack            S;
    SType            temp;
    BinaryTreeNode    
*= BT;
    
int MaxStackSize=50;
    CreatStack(S ,MaxStackSize);            
//产生一个空栈,这一过程函数可以不在这里进行
    while (p!=NULL || !IsEmpty(S))
    
{
        
while (p!=NULL)             //遍历左子树
        {
            temp.ptr
=p;
            Push(S,temp);
            cout
<<p->data.name<<" ";
            p
=p->LChild;  
        }


        
if (!IsEmpty(S))         //通过下一次循环中的内嵌while实现右子树遍历
        {
            Pop(S,temp);
            p
=temp.ptr->RChild;        
        }


    }

     cout
<<endl;
}


void  InOrderN(BinaryTreeNode  * BT) 
{//二叉树的中序遍历非递归算法
    Stack            S;
    SType            temp;
    BinaryTreeNode    
*= BT;
    
int MaxStackSize=50;
    CreatStack (S , MaxStackSize);                
//产生一个空栈,这一过程函数可以不在这里进行
    while (p!=NULL || !IsEmpty(S))
    
{
        
while (p!=NULL)             //遍历左子树
        {
            temp.ptr
=p;
            Push(S,temp);
            p
=p->LChild;
        }


        
if (!IsEmpty(S))
        
{
            Pop(S,temp);
            cout
<<temp.ptr->data.name<<" ";
            p
=temp.ptr->RChild;;            //通过下一次循环实现右子树遍历
        }
  

    }

   cout
<<endl;
}



void  PostOrderN(BinaryTreeNode  * BT) 
{//二叉树的后序遍历非递归算法
    SType            temp;
    Stack            S;
    BinaryTreeNode    
*= BT;
    
int MaxStackSize=50;
    CreatStack (S , MaxStackSize);    
//产生一个空栈,这一过程函数可以不在这里进行
    do 
    
{
        
while (p!=NULL)        //遍历左子树
        {
            temp.ptr 
= p; 
            temp.B 
= false;         //标记为左子树
            Push(S,temp);
            p
=p->LChild;
        }


        
while (!IsEmpty(S) && S.element[S.top].B==true)  
        
{
            Pop(S,temp);
            p 
= temp.ptr;
            cout
<<temp.ptr->data.name<<" ";   //tag为R,表示右子树访问完毕,故访问根结点       
        }


        
if (!IsEmpty(S))
        
{
            S.element[S.top].B 
=true;     //遍历右子树
            p=S.element[S.top].ptr->RChild;        
        }
    
    }
while (!IsEmpty(S));

cout
<<endl;
}

 



// 下面是主程序
int  main()
{
    BinaryTreeNode  
*BT,*p=NULL,*pp[10];
    STUDENT        x;
    
int        High;


    
char    n[][8]={"    ","AAA","BBB","CCC","DDD","EEE","FFF","GGG","HHH"};

    
for(int i=1;i<9;i++)
    
{
        strcpy(x.number,
"7777777");
        strcpy(x.name,n[i]);
        
if (i>4)
            strcpy(x.sex,
"");
        
else 
            strcpy(x.sex,
"");
        x.age
=500+i;
        strcpy(x.place,
"WWWWW");
        pp[i]
=MakeNode(x);
        p
=pp[i];
    }


    MakeBinaryTree(pp[
1], pp[2], pp[3]);
    MakeBinaryTree(pp[
2], pp[4], NULL);
    MakeBinaryTree(pp[
3], pp[5], pp[6]);
    MakeBinaryTree(pp[
4], NULL, pp[7]);
    MakeBinaryTree(pp[
5], pp[8], NULL);
 
    BT
=pp[1];
    pp[
7]->LChild=NULL;
    pp[
7]->RChild=NULL;
    pp[
8]->LChild=NULL;
    pp[
8]->RChild=NULL;
    pp[
6]->LChild=NULL;
    pp[
6]->RChild=NULL;
    High
=BinaryHeight(BT) ;
    cout
<<"树高="<<High<<endl<<endl;
    OutputLevelOrderTL(BT);
    cout
<<"先序遍历的顺序为:"<<endl;
    PreOrderN(BT);
    cout
<<"中序遍历的顺序为:"<<endl;
    InOrderN(BT);
    cout
<<"后序遍历的顺序为:"<<endl;
    PostOrderN(BT);
    
return 0;
}