- 论文笔记:Enhancing Sentence Embeddings in Generative Language Models
UQI-LIUWJ
论文阅读语言模型人工智能
2024ICIC1INTRO对于文本嵌入,过去几年的相关研究主要集中在像BERT和RoBERTa这样的判别模型上。这些模型固有的语义空间各向异性,往往需要通过大量数据集进行微调,才能生成高质量的句子嵌入。——>需要较大的训练批次,这会消耗大量的计算资源一些前沿的工作将焦点转向了最近开发的生成模型,期望利用其先进的文本理解能力,直接对输入句子进行编码,而无需额外的反向传播由于句子表示和自回归语言建模
- (5-2-01)DeepSeek多模态大模型架构:Janus模型(1)
码农三叔
训练RAG多模态)架构人工智能transformerDeepseek大模型多模态
5.2Janus模型Janus多模态模型的设计核心在于视觉编码的解耦。传统多模态模型通常使用单一的视觉编码器来处理多模态理解和视觉生成任务,但由于这两种任务对视觉特征的需求存在显著差异,单一编码器往往难以同时满足两种任务的需求,从而导致性能瓶颈。为了解决这一问题,Janus模型提出了双路径视觉编码架构,将多模态理解和视觉生成任务的视觉编码过程完全分离,从而避免了任务间的冲突,并显著提升了模型在多模
- 读论文:Generation of 3D molecules in pockets via a language model (Lingo3Dmol)
LastWhisperw
语言模型人工智能自然语言处理
基于线性序列(例如SMILES)或图表示的的分子生成模型已经吸引了基于结构的药物设计领域的广泛关注,但这些模型在捕获3维空间交互时还不够强,也因此经常生成我们不希望产生的分子结构。为了解决这些问题,我们提出Lingo3DMol,一个基于口袋的3维分子生成方案,将语言模型和几何深度学习技术结合起来。为了帮助模型学习分子拓扑学和原子的空间位置,我们还提出一个新的分子表示方法,基于片段的简化分子xxxx
- DeepSeek-V3:最强开源MoE模型的技术解析与使用指南
认识祂
deepseek开源deepseek
目录引言模型概览架构创新:负载均衡策略与训练目标预训练:追求极致的训练效率后训练:从DeepSeek-R1进行知识蒸馏模型下载评估结果基础模型标准基准测试上下文窗口聊天模型标准基准测试(大于67B的模型)开放式生成评估如何使用在线聊天与API平台本地运行指南模型权重转换推理示例使用DeepSeek-InferDemo使用SGLang使用LMDeploy许可证引用联系我们1.引言我们隆重推出Deep
- python中from import 所有内容都执行_彻底搞懂Python 中的 import 与 from import
沃特JS
python中fromimport所有内容都执行
你好,我是谢乾坤,前网易高级数据挖掘工程师。现任微软最有价值专家(Python方向),有6年Python开发经验,善于解决各种业务场景下的棘手问题,进一步提升代码质量。对不少Python初学者来说,Python导入其他模块的方式让他们很难理解。什么时候用importxxx?什么时候用fromxxximportyyy?什么时候用fromxxx.yyyimportzzz?什么时候用fromxxximp
- AI岗位面试指南:高频文档问题解析与应答策略
阿三0812
ai人工智能面试
一、必问文档类问题与应答模板1.简历深挖类典型问题:"请详细解释简历中提到的「基于Transformer的文本生成优化项目」,你如何量化性能提升?"应答框架:背景与目标:"项目源于客户需要将文本生成延迟从2秒压缩至800ms以内,同时保证BLEU分数不低于0.82"技术创新点:"采用知识蒸馏+动态量化方案,设计分层注意力裁剪策略"量化成果:"推理速度提升2.7倍(2150ms→780ms),内存占
- ESP32-S3 V5.0.2 flash 手动生成密钥加密 _By星年(已验证)
_星年
物联网网络单片机c语言嵌入式硬件ESP32
环境ESP32-S3ESP_IDFV5.0.2手动生成密钥加密官方参考资料:https://docs.espressif.com/projects/esp-idf/zh_CN/v5.0.2/esp32s3/search.html?q=generate_flash_encryption_key&check_keywords=yes&area=default一、加密(1)生成密钥espsecure.p
- YashanDB环境变量
数据库
本章将展示数据库安装后的环境变量信息,具体以安装生成值为准。如下为使用永久生效方法配置的环境变量信息:exportYASDB_HOME=/data/yashan/yasdb_home/yashandb/23.3.1.100exportPATH=${YASDB_HOME}/bin:$PATHexportLD_LIBRARY_PATH=${YASDB_HOME}/lib:$LD_LIBRARY_PAT
- python实现对称加密
对称加密是一种加密技术,其中加密和解密使用相同的密钥。对于初学者来说,理解和实现对称加密是学习网络安全和数据保护的重要一步。本文将通过一个简单的流程来教你如何在Python中实现对称加密。1.实现流程下面是实现对称加密的基本流程:步骤描述1.导入库导入必要的加密库,例如cryptography2.生成密钥生成一个密钥用于加密和解密3.加密数据使用生成的密钥对数据进行加密4.解密数据使用相同的密钥对
- 当我的同事先用了通义灵码DeepSeek-R1模型……
云原生
当你发现同事的代码生成速度比你快,注释比你多,甚至还能智能问答时,别慌,他可能只是比你先用了通义灵码的DeepSeek-R1模型。近日,通义灵码上线DeepSeek-R1模型选择功能,为开发者们提供更懂中文,更擅复杂场景的AI编码助手,安装只需30秒,在IDEA插件市场搜索“通义”,认准排名第一的插件——最新2.1.0版本已支持多个模型,具备实时续写、自然语言生成、智能问答等多项能力。我们选择阿里
- SQLMesh 系列教程10- 外部模型(External Models)
梦想画家
数据分析工程#python数据工程sqlmesh
在数据分析和建模过程中,外部模型(ExternalModels)在SQLMesh中扮演着重要角色。外部模型允许用户引用外部数据源或现有数据库表,从而实现灵活的数据整合和分析。本文将介绍外部模型的定义、生成方法(包括使用CLI和YAML文件)、审计功能,以及如何在实际项目中应用外部模型。通过一个具体的示例,我们将展示如何定义和使用外部模型来分析客户数据,帮助用户更好地理解和利用SQLMesh的强大功
- 支持 40+ 插件,Spring AI Alibaba 简化智能体私有数据集成
云原生
作者:张震霆&何裕墙,SpringAIAlibabaContributor在AI智能体(AIAgent)开发的过程中,RAG(Retrieval-AugmentedGeneration)和ToolCalling已经成为两种至关重要的模式。RAG通过结合检索技术和生成模型的强大能力,使智能体能够实时从外部数据源获取信息,并在生成过程中增强其知识深度和推理能力。通过这种方式,智能体不仅能依赖于模型的预
- 1月15日直播预告丨AI赋能指标管理分析 开启企业数智领航时代
大数据
为了帮助企业更有效地推进数字化转型升级,袋鼠云精心策划了一系列以“数字基建+数智应用”为核心的赋能分享活动,本系列直播共有四期,每期聚焦于不同的关键议题,深入探讨企业数字化转型中面临的挑战以及可行的应对策略。我们期待通过这些直播活动,与业界同仁深化交流,共同探讨数字化转型中的难点与痛点,并寻找切实可行的破局之道。我们坚信,凭借我们共同的努力与智慧,将为企业带来更多创新机遇和发展动力,推动行业的进步
- 评估您的数据是否可用于人工智能的三个考虑因素
人工智能
评估您的数据是否可用于人工智能的三个考虑因素多数组织正在人工智能和生成性人工智能的炒作中迷失方向。在许多情况下,他们并没有准备好人工智能项目所需的数据基础。三分之一的高管认为,只有不到50%的组织有了人工智能所需的数据,而多数组织并未准备好。因此,在开展人工智能项目之前,奠定正确的基础至关重要。在评估准备情况时,主要考虑因素如下:可用性:您的数据在哪里?类目:您将如何记录和协调您的数据?质量:优质
- 从零开始:使用PyTorch构建DeepSeek R1模型及其训练详解
陆鳐LuLu
pytorch人工智能python
本文将引导你使用PyTorch从零开始构建DeepSeekR1模型,并详细解释模型架构和训练步骤。DeepSeekR1是一个假设的模型名称,为了演示目的,我们将构建一个基于Transformer的简单文本生成模型。1.模型架构DeepSeekR1的核心是一个基于Transformer的编码器-解码器架构,包含以下关键组件:EmbeddingLayer:将输入的单词索引转换为密集向量表示。Posit
- 什么是RAG?RAG是如何解决问题的?RAG的未来发展趋势有哪些?
大模型综述
人工智能开发语言大模型AGIaiRAG自然语言处理
一、什么是RAG所谓RAG,检索增强生成(RetrievalAugmentedGeneration),简称RAG,已经成为当前最火热的LLM应用方案。通俗点说:就是通过自有垂域数据库检索相关信息,然后合并成为提示模板,给大模型生成漂亮的回答。二、为什么会出现RAGRAG的出现,是因为在大模型的广泛应用中,伴随着出现的一些问题,比如:知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模
- DeepSeek API是什么
兔兔爱学习兔兔爱学习
大模型pythonprompt算法
DeepSeekAPI是一个提供人工智能服务的接口,它允许开发者通过简单的API调用来实现各种高级的自然语言处理(NLP)任务,如文本生成、对话系统、文本摘要、问答系统等。DeepSeekAPI通常基于先进的大模型,如Transformer架构的模型,提供了强大的语言理解和生成能力。DeepSeekAPI的特点易于集成:开发者可以通过简单的HTTP请求调用API,无需深入了解底层模型的具体实现。高
- ChatGPT生成的大模型竞品分析报告
Forbesdytto
chatgpt语言模型
AI大模型产品竞品分析报告1.报告概述本报告旨在分析国内外主要的AI大模型产品,包括其功能、市场定位、技术优势和劣势。通过对比这些竞品,我们可以更好地了解市场格局,制定自身产品的战略。2.主要竞争对手概述国内百度-文心一言(ErnieBot)阿里巴巴-M6腾讯-HunYuan华为-PanGu国外OpenAI-GPT-4Google-Bard(LaMDA)微软-AzureOpenAI(基于OpenA
- 如何用Java校验SQL语句的合法性
master_chenchengg
能力提升面试宝典技术IT信息化
如何用Java校验SQL语句的合法性SQL语句基础与常见错误类型使用Java解析SQL语句的基本方法通过JDBC执行预编译语句验证SQL合法性应用第三方库如JSqlParser进行SQL语法检查实现自定义SQL校验规则以增强安全性处理动态SQL生成及校验的挑战与解决方案在Java应用中集成SQL校验的最佳实践探讨SQL注入防护策略与Java中的实现方式SQL语句基础与常见错误类型在讨论如何使用Ja
- ChatGPT版本差异分析大全
爱吃青菜的大力水手
chatgpt人工智能
1.核心功能差异多模态支持:GPT-4o支持文本、图像和音频的多模态输入与处理,适合需要结合多种媒体形式的任务(如设计、多媒体内容生成)。o1系列(o1-preview/o1-mini)仅支持纯文本处理,但专注于深度推理和分析。GPT-3.5是早期版本,仅支持文本,且性能和上下文理解能力较弱。2.推理与准确性o1系列在复杂推理任务中表现卓越:通过CoT(链式推理)技术分解复杂问题,在医学临床案例测
- 一文读懂 AI 大模型备案:万字详解全流程要点
chuangfumao
人工智能
一、引言在当今数字化时代,AI大模型以其强大的智能处理能力,广泛应用于各个领域,从智能客服到图像生成,从医疗诊断辅助到金融风险预测,大模型正深刻改变着人们的生活和工作方式。然而,随着其影响力的不断扩大,规范管理成为必然需求。AI大模型备案制度应运而生,这一制度对于保障数据安全、保护用户隐私、维护社会稳定和国家安全具有重要意义。它确保大模型在整个生命周期,从开发、训练到部署和应用,都严格遵循相关法律
- Struts2的简单使用
dianbiao2276
web.xmljavaui
一、准备工作及实例1.解压struts-2.1.6-all.zipapps目录:struts2自带的例子程序docs目录:官方文档。lib目录:存放所有jar文件。Src目录:源文件存放地2.六个基本包struts2-core-2.1.6.jar:开发的核心类库freemarker-2.3.13.jar:struts2的UI标签的模板使用freemarker编写commons-logging-1.
- 开发区界址点文件生成代码
罖忞財
python
#-*-coding:utf-8-*-importgeopandasasgpdfromshapely.geometryimportPoint,PolygonimportsysfromPyQt5.QtWidgetsimportQApplication,QWidget,QVBoxLayout,QHBoxLayout,QPushButton,QLabel,QComboBox,QFileDialog,QM
- 破局者DeepSeek:从技术追赶到全球领跑的三大颠覆密码
未来智慧谷
人工智能
2025开年之际,DeepSeek这款中国AI大模型不仅登上全球权威评测榜首,更引发硅谷科技巨头的战略级关注。本期我们将深度解码揭开其现象级爆发背后的硬核逻辑——技术突围、成本革命与极客生态的三角共振。一、技术突围:架构级创新打破算力囚笼DeepSeek的爆发绝非营销奇迹,而是一场蓄谋已久的技术革命。自2024年5月发布DeepSeek-V2引发行业震动以来,其技术路线始终贯彻着「以算法革命对冲算
- Kubernetes (K8S) 高效使用技巧与实践指南
挣扎与觉醒中的技术人
kubernetes容器云原生网络
Kubernetes(K8S)作为容器编排领域的核心工具,其灵活性和复杂性并存。本文结合实战经验,从运维效率提升、生产环境避坑、核心功能应用等维度,总结高频使用技巧与最佳实践,分享如何快速掌握K8S。一、kubectl高效操作技巧1.自动补全与上下文切换kubectl是操作K8S的核心命令行工具,通过以下配置可大幅提升操作效率:#Bash自动补全source快速切换目标集群。2.YAML模板生成与
- python 生成excel
scan724
#!/usr/bin/envpython#-*-coding:utf-8-*-importMySQLdbfromdatetimeimportdatetimeimportcx_Oracleimportosimportxlwtimportsysreload(sys)sys.setdefaultencoding('utf-8')os.environ['NLS_LANG']='SIMPLIFIEDCHIN
- 在Intel GPU上使用IPEX-LLM进行本地BGE嵌入
shuoac
python
在现代人工智能应用中,尤其在诸如检索增强生成(RAG)和文档问答等任务中,低延迟是一个至关重要的指标。Intel的IPEX-LLM是一种专门为IntelCPU和GPU优化的PyTorch库,能够在包括本地PC上的集成显卡和独立显卡(如Arc、Flex和Max)在内的Intel硬件上以极低的延迟运行大型语言模型(LLM)。本文将介绍如何在IntelGPU上结合LangChain使用IPEX-LLM进
- CMake 常用命令
luoganttcc_son
c++c++开发语言
linkcmake是现在主流的用于多平台C++构建系统,本文用来记录cmake的一些常用命令的索引,加上一些自己理解,理解有误的话,欢迎大家指出。常用路径CMAKE_SOURCE_DIR:顶级cmakelists.txt的文件夹目录。CMAKE_BINRAY_DIR:对应cmake的build的目录,主要是运行时生成的文件目录。CMAKE_CURRENT_SOURCE_DIR:一般来说,一个工程会
- 用 ActionNode 重构技术文档助手:从原理到实践的深度解析
海棠AI实验室
智元启示录重构ActionNodeMetaGPT人工智能AIagent
目录什么是ActionNode?为什么用ActionNode重构技术文档助手?系统架构:从多智能体到ActionNode示例代码实现:技术文档助手中的ActionNode总结在数字化时代,技术文档的重要性日益凸显。一份清晰、准确的文档不仅能帮助用户快速上手,还能提升产品的专业形象。然而,撰写高质量的技术文档往往耗时费力。近年来,随着人工智能技术的飞速发展,自动生成技术文档成为可能。MetaGPT框
- ChatGPT免费背后的技术暗战 国产数字孪生如何打造“虚实共生”新生态?
wlsjdszls
chatgpt人工智能信息可视化
当ChatGPT搜索功能向全球免费开放,AI技术的平民化时代正式来临。在这场看似“让利”的商业策略背后,实则是全球科技话语权的重新洗牌。国产厂商如何在这场博弈中占据主动?数字孪生技术的场景化落地提供了破局方向。据中国信通院认证,凡拓数创的FT-Earth引擎可实现城市级孪生场景的Web端秒级加载,其在北京车展上推出的“AI孪生营销助手”,单日互动量突破10万。数字孪生赛道升温,国产厂商技术突围随着
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理