前言
虽然一直在做应用层开发,但是我们组是核心系统BSP,了解底层了解Android的运行机制还是很有必要的。就应用程序而言,Android系统中的Java应用程序和其他系统上相同,都是靠消息驱动来工作的,它们大致的工作原理如下:
- 有一个消息队列,可以往这个消息队列中投递消息。
- 有一个消息循环,不断从消息队列中取出消息,然后处理 。
为了更深入的理解Android的消息处理机制,这几天空闲时间,我结合《深入理解Android系统》看了Handler、Looper、Message这几个类的源码,这里分享一下学习心得。
Looper类分析
在分析之前,我先把Looper类的源码show出来,非常精简的代码,源码如下(frameworks/base/core/java/android/os/Looper.java):
public final class Looper {
private static final String TAG = "Looper";
// sThreadLocal.get() will return null unless you've called prepare().
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
private static Looper sMainLooper; // guarded by Looper.class
final MessageQueue mQueue;
final Thread mThread;
private Printer mLogging;
/** Initialize the current thread as a looper.
* This gives you a chance to create handlers that then reference
* this looper, before actually starting the loop. Be sure to call
* {@link #loop()} after calling this method, and end it by calling
* {@link #quit()}.
*/
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
/**
* Initialize the current thread as a looper, marking it as an
* application's main looper. The main looper for your application
* is created by the Android environment, so you should never need
* to call this function yourself. See also: {@link #prepare()}
*/
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
/** Returns the application's main looper, which lives in the main thread of the application.
*/
public static Looper getMainLooper() {
synchronized (Looper.class) {
return sMainLooper;
}
}
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
msg.target.dispatchMessage(msg);
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycle();
}
}
/**
* Return the Looper object associated with the current thread. Returns
* null if the calling thread is not associated with a Looper.
*/
public static Looper myLooper() {
return sThreadLocal.get();
}
public void setMessageLogging(Printer printer) {
mLogging = printer;
}
/**
* Return the {@link MessageQueue} object associated with the current
* thread. This must be called from a thread running a Looper, or a
* NullPointerException will be thrown.
*/
public static MessageQueue myQueue() {
return myLooper().mQueue;
}
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
/**
* Returns true if the current thread is this looper's thread.
* @hide
*/
public boolean isCurrentThread() {
return Thread.currentThread() == mThread;
}
public void quit() {
mQueue.quit(false);
}
public void quitSafely() {
mQueue.quit(true);
}
public int postSyncBarrier() {
return mQueue.enqueueSyncBarrier(SystemClock.uptimeMillis());
}
public void removeSyncBarrier(int token) {
mQueue.removeSyncBarrier(token);
}
/**
* Return the Thread associated with this Looper.
*/
public Thread getThread() {
return mThread;
}
/** @hide */
public MessageQueue getQueue() {
return mQueue;
}
/**
* Return whether this looper's thread is currently idle, waiting for new work
* to do. This is intrinsically racy, since its state can change before you get
* the result back.
* @hide
*/
public boolean isIdling() {
return mQueue.isIdling();
}
public void dump(Printer pw, String prefix) {
pw.println(prefix + toString());
mQueue.dump(pw, prefix + " ");
}
public String toString() {
return "Looper (" + mThread.getName() + ", tid " + mThread.getId()
+ ") {" + Integer.toHexString(System.identityHashCode(this)) + "}";
}
}
Looper字面意思是“循环”,它被设计用来将一个普通的Thread线程变成Looper Thread线程。所谓Looper线程就是循环工作的线程,在程序开发(尤其是GUI开发)中,我们经常会使用到一个循环执行的线程,有新任务就立刻执行,没有新任务就循环等待。使用Looper创建Looper Thread很简单,示例代码如下:
package com.example.testlibrary;
import android.os.Handler;
import android.os.Looper;
public class LooperTheread extends Thread{
public Handler mhHandler;
@Override
public void run() {
// 1. 调用Looper
Looper.prepare();
// ... 其他处理,例如实例化handler
// 2. 进入消息循环
Looper.loop();
}
}
通过1、2两步核心代码,你的线程就升级为Looper线程了。下面,我们对两个关键调用1、2进行逐一分析。
Looper.prepare()
在调用prepare的线程中,new了一个Looper对象,并将这个Looper对象保存在这个调用线程的ThreadLocal中。而Looper对象内部封装了一个消息队列。
我们来看一下Looper类的源码。第一个调用函数是Looper的prepare函数,它的源码如下:
// 每个线程中的Looper对象其实是一个ThreadLocal,即线程本地存储(TLS)对象
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
根据上面的源码可知,prepare会在调用线程的局部变量中设置一个Looper对象,并且一个Thread只能有一个Looper对象。这个调用线程就是LooperThread的run线程。来看一下Looper对象的构造源码:
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
通过源码,我们可以轻松了解Looper的工作方式,其核心就是将Looper对象保存到当前线程的ThreadLocal中,并且保证该Looper对象只new一次。如果不理解ThreadLocal,可以参考我这篇文章: 正确理解ThreadLocal
Looper循环
调用了Loop方法后,Looper线程就开始真正的工作了,它不断从自己的MessageQueue中取出对头的信息(也叫任务)执行,如图所示:
其实现源码如下所示(这里我做了一些修整,去掉不影响主线的代码):
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
// 取出这个Looper的消息队列
final MessageQueue queue = me.mQueue;
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// 处理消息,Message对象中有一个target,它是Handler类型
msg.target.dispatchMessage(msg);
msg.recycle();
}
}
/**
* Return the Looper object associated with the current thread. Returns
* null if the calling thread is not associated with a Looper.
*/
public static Looper myLooper() {
return sThreadLocal.get();
}
通过上面的分析会发现,Looper的作用是:
- 封装了一个消息队列。
- Looper的prepare函数把这个Looper和调用prepare的线程(也就是最终处理的线程)绑定在一起,通过ThreadLocal机制实现的。
- 处理线程调用loop函数,处理来自该消息队列的消息。
如何往MessageQueue里添加消息,是由Handler实现的,下面来分析一下Handler。
Handler分析
什么是handler?handler扮演了往MessageQueue里添加消息和处理消息的角色(只处理由自己发出的消息),即通过MessageQueue它要执行一个任务(sendMessage),并在loop到自己的时候执行该任务(handleMessage),整个过程是异步的。
初识Handler
Handler中的所包括的成员变量:
final MessageQueue mQueue; // Handler中也有一个消息队列
final Looper mLooper; // 也有一个Looper
final Callback mCallback; // 有一个回调类
这几个成员变量的使用,需要分析Handler的构造函数。Handler有N多构造函数,但是我们只分析最简单的情况,在当前线程中直接new一个Handler(Handler handler = new Handler())。我们看一下构造函数是如何完成初始化操作的(frameworks/base/core/java/android/os/Handler.java):
public Handler() {
this(null, false);
}
/**
* Use the {@link Looper} for the current thread with the specified callback interface
* and set whether the handler should be asynchronous.
*
* Handlers are synchronous by default unless this constructor is used to make
* one that is strictly asynchronous.
*
* Asynchronous messages represent interrupts or events that do not require global ordering
* with represent to synchronous messages. Asynchronous messages are not subject to
* the synchronization barriers introduced by {@link MessageQueue#enqueueSyncBarrier(long)}.
*
* @param callback The callback interface in which to handle messages, or null.
* @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
* each {@link Message} that is sent to it or {@link Runnable} that is posted to it.
*
* @hide
*/
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
通过上面的构造函数,我们可以发现,当前Handler中的mLooper是从Looper.myLooper()函数获取来的,而这个函数的定义我再复制一下,如下所示:
/**
* Return the Looper object associated with the current thread. Returns
* null if the calling thread is not associated with a Looper.
*/
public static Looper myLooper() {
return sThreadLocal.get();
}
google源码的注释也是很清楚的。可以看到,Handler中的Looper对象是Handler对象所属线程的Looper对象。如果Handler是在UI线程中实例化的,那Looper对象就是UI线程的对象。如果Handler是在子线程中实例化的,那Looper对象就是子线程的Looper对象(基于ThreadLocal机制实现)。
Handler真面目
由上面分析可知,Handler中的消息队列实际上就是Handler所属线程的Looper对象的消息队列,我们可以为之前的LooperThread类增加Handler,代码如下:
public class LooperThread extends Thread{
public Handler mhHandler;
@Override
public void run() {
// 1. 调用Looper
Looper.prepare();
// ... 其他处理,例如实例化handler
Handler handler = new Handler();
// 2. 进入消息循环
Looper.loop();
}
}
加入Handler的效果图如下所示:
问一个问题,假设没有Handler,我们该如何往Looper的MessageQueue里插入消息呢?这里我说一个原始的思路:
- 调用Looper的myQueue,它将返回消息队列对象MessageQueue。
- 构造一个Message,填充它的成员,尤其是target对象。
- 调用MessageQueue的enqueueMessage,将消息插入到消息队列中。
上面的方法虽然能工作,但是非常原始,有了Handler以后,它像一个辅助类,提供了一系列API调用,帮我们简化编程工作。常用API如下:
- post(Runnable)
- postAtTime(Runnable, long)
- postDelayed(Runnable, long)
- sendEmptyMessage(int)
- sendMessage(Message)
- sendMessageAtTime(Message, long)
- sendMessageDelayed(Message, long)
光看以上的API,你会认为handler可能会发送两种信息,一种是Runnable对象,一种是Message对象,这是主观的理解,但是从源码中我们可以看到,post发出的Runnable对象最后都被封装成了Message对象,源码如下:
public final boolean post(Runnable r)
{
return sendMessageDelayed(getPostMessage(r), 0);
}
private static Message getPostMessage(Runnable r) {
Message m = Message.obtain(); // 得到空的message
m.callback = r; // 将runnable设置为message的callback
return m;
}
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
最终发送消息都会调用sendMessageAtTime函数,我们看一下它的源码实现:
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this; // 将Message的target设置为当前的Handler,然后将消息自己加到消息队列中
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
Handler处理消息
讲完了消息发送,再看一下Handler是如何处理消息的。消息的处理是通过核心方法dispatchMessage(Message msg)与钩子方法handleMessage(Message msg)完成的,源码如下:
/**
* Handle system messages here.
*/
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
private static void handleCallback(Message message) {
message.callback.run();
}
/**
* Subclasses must implement this to receive messages.
*/
public void handleMessage(Message msg) {
}
dispatchMessage定义了一套消息处理的优先级机制,它们分别是:
- 如果Message自带了callback处理,则交给callback处理。例如上文分析的,Handler里通过post(Runnable r)发生一个Runnable对象,则msg的callback对象就被赋值为Runnable对象。
- 如果Handler设置了全局的mCallback,则交给mCallback处理。
- 如果上述都没有,该消息会被交给Handler子类实现的handlerMessage(Message msg)来处理。当然,这需要从Handler派生并重写HandlerMessage函数。
在通过情况下,我们一般都是采用第三种方法,即在子类中通过重载handlerMessage来完成处理工作。
Handler的用处
看完了Handler的发送消息和处理消息,我们来学习一下Handler被称为异步处理大师的真正牛逼之处。Hanlder有两个重要的特点:
1. handler可以在任意线程上发送消息,这些消息会被添加到Handler所属线程的Looper对象的消息队列里。
2. handler是在实例化它的线程中处理消息的。
这解决了Android经典的不能在非主线程中更新UI的问题。Android的主线程也是一个Looper线程,我们在其中创建的Handler将默认关联主线程Looper的消息队列。因此,我们可以在主线程创建Handler对象,在耗时的子线程获取UI信息后,通过主线程的Handler对象引用来发生消息给主线程,通知修改UI,当然消息了还可以包含具体的UI数据。
Message
在整个消息处理机制中,Message又叫做task,封装了任务携带的消息和处理该任务的handler。Message的源码比较简单,源码位置(frameworks/base/core/java/android/os/Message.java)这里简单说明几点注意事项:
1. 尽管Message有public的默认构造方法,但是你应该通过Message.obtain()来从消息池中获得空消息对象,以节省资源,源码如下:
/**
* Return a new Message instance from the global pool. Allows us to
* avoid allocating new objects in many cases.
*/
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
sPoolSize--;
return m;
}
}
return new Message();
}
/** Constructor (but the preferred way to get a Message is to call {@link #obtain() Message.obtain()}).
*/
public Message() {
}
2. 如果你的Message只需要携带简单的int信息,应该优先使用Message.arg1和Message.arg2来传递信息,这比使用Bundler节省内存。
/**
* arg1 and arg2 are lower-cost alternatives to using
* {@link #setData(Bundle) setData()} if you only need to store a
* few integer values.
*/
public int arg1;
/**
* arg1 and arg2 are lower-cost alternatives to using
* {@link #setData(Bundle) setData()} if you only need to store a
* few integer values.
*/
public int arg2;
/**
* Sets a Bundle of arbitrary data values. Use arg1 and arg1 members
* as a lower cost way to send a few simple integer values, if you can.
* @see #getData()
* @see #peekData()
*/
public void setData(Bundle data) {
this.data = data;
}
3. 用Message.what来标识信息,以便用不同方式处理message。
示例代码
写了一个子线程利用主线程Handler更新UI的示例代码,如下:
public class MainActivity extends Activity {
TextView mTextView;
MyHandler mHandler = new MyHandler();
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mTextView = (TextView)findViewById(R.id.test1);
new Thread(new UpdateTitleTask(mHandler)).start();
}
private class MyHandler extends Handler {
@Override
public void handleMessage(Message msg) {
Bundle bundle = msg.getData();
mTextView.setText(bundle.getString("title", ""));
}
}
}
public class UpdateTitleTask implements Runnable{
private Handler handler;
public UpdateTitleTask(Handler handler) {
this.handler = handler;
}
private Message prepareMsg() {
Message msg = Message.obtain();
Bundle bundle = new Bundle();
bundle.putString("title", "From Update Task");;
msg.setData(bundle);
return msg;
}
@Override
public void run() {
try {
Thread.sleep(2000);
Message msg = prepareMsg();
handler.sendMessage(msg);
} catch (InterruptedException e) {
}
}
}
参考文献
1. 《深入理解Android 卷一》
2. http://www.cnblogs.com/codingmyworld/archive/2011/09/12/2174255.html