linux socket学习(二)

原文转自

http://www.cnblogs.com/lzjsky/archive/2013/03/18/2965983.html


四.使用select

select这个系统调用,是一种多路复用IO方案,可以同时对多个文件描述符进行监控,从而知道哪些文件描述符可读,可写或者出错,不过select方法是阻塞的,可以设定超时时间。 select使用的步骤如下:

  • 1.创建一个fd_set变量(fd_set实为包含了一个整数数组的结构体),用来存放所有的待检查的文件描述符
  • 2.清空fd_set变量,并将需要检查的所有文件描述符加入fd_set
  • 3.调用select。若返回-1,则说明出错;返回0,则说明超时,返回正数,则为发生状态变化的文件描述符的个数
  • 4.若select返回大于0,则依次查看哪些文件描述符变的可读,并对它们进行处理
  • 5.返回步骤2,开始新一轮的检测

若上面的聊天程序使用select进行改写,则是下面这样的


服务器端

   #include <stdio.h>
    #include <stdlib.h>
    #include <netinet/in.h>
    #include <sys/socket.h>
    #include <arpa/inet.h>
    #include <string.h>
    #include <unistd.h>
    #define BACKLOG 5 //完成三次握手但没有accept的队列的长度
    #define CONCURRENT_MAX 8 //应用层同时可以处理的连接
    #define SERVER_PORT 11332
    #define BUFFER_SIZE 1024
    #define QUIT_CMD ".quit"
    int client_fds[CONCURRENT_MAX];
    int main (int argc, const char * argv[])
    {
        char input_msg[BUFFER_SIZE];
        char recv_msg[BUFFER_SIZE];   
        //本地地址
        struct sockaddr_in server_addr;
        server_addr.sin_len = sizeof(struct sockaddr_in);
        server_addr.sin_family = AF_INET;
        server_addr.sin_port = htons(SERVER_PORT);
        server_addr.sin_addr.s_addr = inet_addr("127.0.0.1");
        bzero(&(server_addr.sin_zero),8);
        //创建socket
        int server_sock_fd = socket(AF_INET, SOCK_STREAM, 0);
        if (server_sock_fd == -1) {
            perror("socket error");
            return 1;
        }
        //绑定socket
        int bind_result = bind(server_sock_fd, (struct sockaddr *)&server_addr, sizeof(server_addr));
        if (bind_result == -1) {
            perror("bind error");
            return 1;
        }
        //listen
        if (listen(server_sock_fd, BACKLOG) == -1) {
            perror("listen error");
            return 1;
        }
        //fd_set
        fd_set server_fd_set;
        int max_fd = -1;
        struct timeval tv;
        tv.tv_sec = 20;
        tv.tv_usec = 0;
        while (1) {
            FD_ZERO(&server_fd_set);
            //标准输入
            FD_SET(STDIN_FILENO, &server_fd_set);
            if (max_fd < STDIN_FILENO) {
                max_fd = STDIN_FILENO;
            }
            //服务器端socket
            FD_SET(server_sock_fd, &server_fd_set);
            if (max_fd < server_sock_fd) {
                max_fd = server_sock_fd;
            }
            //客户端连接
            for (int i = 0; i < CONCURRENT_MAX; i++) {
                if (client_fds[i]!=0) {
                    FD_SET(client_fds[i], &server_fd_set);

                    if (max_fd < client_fds[i]) {
                        max_fd = client_fds[i];
                    }
                }
            }
            int ret = select(max_fd+1, &server_fd_set, NULL, NULL, &tv);
            if (ret < 0) {
                perror("select 出错\n");
                continue;
            }else if(ret == 0){
                printf("select 超时\n");
                continue;
            }else{
                //ret为未状态发生变化的文件描述符的个数
                if (FD_ISSET(STDIN_FILENO, &server_fd_set)) {
                    //标准输入
                    bzero(input_msg, BUFFER_SIZE);
                    fgets(input_msg, BUFFER_SIZE, stdin);
                    //输入 ".quit" 则退出服务器
                    if (strcmp(input_msg, QUIT_CMD) == 0) {
                        exit(0);
                    }
                    for (int i=0; i<CONCURRENT_MAX; i++) {
                        if (client_fds[i]!=0) {
                            send(client_fds[i], input_msg, BUFFER_SIZE, 0);
                        }
                    }
                }
                if (FD_ISSET(server_sock_fd, &server_fd_set)) {
                    //有新的连接请求
                    struct sockaddr_in client_address;
                    socklen_t address_len;
                    int client_socket_fd = accept(server_sock_fd, (struct sockaddr *)&client_address, &address_len);
                    if (client_socket_fd > 0) {
                        int index = -1;
                        for (int i = 0; i < CONCURRENT_MAX; i++) {
                            if (client_fds[i] == 0) {
                                index = i;
                                client_fds[i] = client_socket_fd;
                                break;
                            }
                        }
                        if (index >= 0) {
                            printf("新客户端(%d)加入成功 %s:%d \n",index,inet_ntoa(client_address.sin_addr),ntohs(client_address.sin_port));
                        }else{
                            bzero(input_msg, BUFFER_SIZE);
                            strcpy(input_msg, "服务器加入的客户端数达到最大值,无法加入!\n");
                            send(client_socket_fd, input_msg, BUFFER_SIZE, 0);
                            printf("客户端连接数达到最大值,新客户端加入失败 %s:%d \n",inet_ntoa(client_address.sin_addr),ntohs(client_address.sin_port));
                        }
                    }
                }
                for (int i = 0; i <CONCURRENT_MAX; i++) {
                    if (client_fds[i]!=0) {
                        if (FD_ISSET(client_fds[i], &server_fd_set)) {
                            //处理某个客户端过来的消息
                            bzero(recv_msg, BUFFER_SIZE);
                            long byte_num = recv(client_fds[i],recv_msg,BUFFER_SIZE,0);
                            if (byte_num > 0) {
                                if (byte_num > BUFFER_SIZE) {
                                    byte_num = BUFFER_SIZE;
                                }
                                recv_msg[byte_num] = '\0';
                                printf("客户端(%d):%s\n",i,recv_msg);
                            }else if(byte_num < 0){
                                printf("从客户端(%d)接受消息出错.\n",i);
                            }else{
                                FD_CLR(client_fds[i], &server_fd_set);
                                client_fds[i] = 0;
                                printf("客户端(%d)退出了\n",i);
                            }
                        }
                    }
                }
            }
        }
        return 0;
    }


客户端

    #include <stdio.h>
    #include <netinet/in.h>
    #include <sys/socket.h>
    #include <arpa/inet.h>
    #include <string.h>
    #include <unistd.h>
    #include <stdlib.h>

    #define BUFFER_SIZE 1024

    int main (int argc, const char * argv[])
    {
        struct sockaddr_in server_addr;
        server_addr.sin_len = sizeof(struct sockaddr_in);
        server_addr.sin_family = AF_INET;
        server_addr.sin_port = htons(11332);
        server_addr.sin_addr.s_addr = inet_addr("127.0.0.1");
        bzero(&(server_addr.sin_zero),8);

        int server_sock_fd = socket(AF_INET, SOCK_STREAM, 0);
        if (server_sock_fd == -1) {
            perror("socket error");
            return 1;
        }
        char recv_msg[BUFFER_SIZE];
        char input_msg[BUFFER_SIZE];

        if (connect(server_sock_fd, (struct sockaddr *)&server_addr, sizeof(struct sockaddr_in))==0) {
            fd_set client_fd_set;
            struct timeval tv;
            tv.tv_sec = 20;
            tv.tv_usec = 0;


            while (1) {
                FD_ZERO(&client_fd_set);
                FD_SET(STDIN_FILENO, &client_fd_set);
                FD_SET(server_sock_fd, &client_fd_set);

                int ret = select(server_sock_fd + 1, &client_fd_set, NULL, NULL, &tv);
                if (ret < 0 ) {
                    printf("select 出错!\n");
                    continue;
                }else if(ret ==0){
                    printf("select 超时!\n");
                    continue;
                }else{
                    if (FD_ISSET(STDIN_FILENO, &client_fd_set)) {
                        bzero(input_msg, BUFFER_SIZE);
                        fgets(input_msg, BUFFER_SIZE, stdin);
                        if (send(server_sock_fd, input_msg, BUFFER_SIZE, 0) == -1) {
                            perror("发送消息出错!\n");
                        }
                    }

                    if (FD_ISSET(server_sock_fd, &client_fd_set)) {
                        bzero(recv_msg, BUFFER_SIZE);
                        long byte_num = recv(server_sock_fd,recv_msg,BUFFER_SIZE,0);
                        if (byte_num > 0) {
                            if (byte_num > BUFFER_SIZE) {
                                byte_num = BUFFER_SIZE;
                            }
                            recv_msg[byte_num] = '\0';
                            printf("服务器:%s\n",recv_msg);
                        }else if(byte_num < 0){
                            printf("接受消息出错!\n");
                        }else{
                            printf("服务器端退出!\n");
                            exit(0);
                        }

                    }
                }
            }

        }

        return 0;
    }


当然select也有其局限性。当fd_set中的文件描述符较少,或者大都数文件描述符都比较活跃的时候,select的效率还是不错的。Mac系统中已经定义了fd_set 最大可以容纳的文件描述符的个数为1024

//sys/_structs.h
#define __DARWIN_FD_SETSIZE 1024
/////////////////////////////////////////////
//Kernel.framework sys/select.h
#define FD_SETSIZE  __DARWIN_FD_SETSIZE

每一次select 调用的时候,都涉及到user space和kernel space的内存拷贝,且会对fd_set中的所有文件描述符进行遍历,如果所有的文件描述符均不满足,且没有超时,则当前进程便开始睡眠,直到超时或者有文件描述符状态发生变化。当文件描述符数量较大的时候,将耗费大量的CPU时间。所以后来有新的方案出现了,如windows2000引入的IOCP,Linux Kernel 2.6中成熟的epoll,FreeBSD4.x引入的kqueue。



五.使用kqueue

Mac是基于BSD的内核,所使用的是kqueue(kernel event notification mechanism,详细内容可以Mac中 man 2 kqueue),kqueue比select先进的地方就在于使用事件触发的机制,且其调用无需每次对所有的文件描述符进行遍历,返回的时候只返回需要处理的事件,而不像select中需要自己去一个个通过FD_ISSET检查。
kqueue默认的触发方式是level 水平触发,可以通过设置event的flag为EV_CLEAR 使得这个事件变为边沿触发,可能epoll的触发方式无法细化到单个event,需要查证。

kqueue中涉及两个系统调用,kqueue()和kevent()

  • kqueue() 创建kernel级别的事件队列,并返回队列的文件描述符
  • kevent() 往事件队列中加入订阅事件,或者返回相关的事件数组

kqueue使用的流程一般如下:

  • 创建kqueue
  • 创建struct kevent变量(注意这里的kevent是结构体类型名),可以通过EV_SET这个宏提供的快捷方式进行创建
  • 通过kevent系统调用将创建好的kevent结构体变量加入到kqueue队列中,完成对指定文件描述符的事件的订阅
  • 通过kevent系统调用获取满足条件的事件队列,并对每一个事件进行处理

 

#include <stdio.h>
#include <stdlib.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/event.h>
#include <sys/types.h>
#include <sys/time.h>
#include <arpa/inet.h>
#include <string.h>
#include <unistd.h>
#define BACKLOG 5 //完成三次握手但没有accept的队列的长度
#define CONCURRENT_MAX 8 //应用层同时可以处理的连接
#define SERVER_PORT 11332
#define BUFFER_SIZE 1024
#define QUIT_CMD ".quit"
int client_fds[CONCURRENT_MAX];
struct kevent events[10];//CONCURRENT_MAX + 2
int main (int argc, const char * argv[])
{
    char input_msg[BUFFER_SIZE];
    char recv_msg[BUFFER_SIZE];
    //本地地址
    struct sockaddr_in server_addr;
    server_addr.sin_len = sizeof(struct sockaddr_in);
    server_addr.sin_family = AF_INET;
    server_addr.sin_port = htons(SERVER_PORT);
    server_addr.sin_addr.s_addr = inet_addr("127.0.0.1");
    bzero(&(server_addr.sin_zero),8);
    //创建socket
    int server_sock_fd = socket(AF_INET, SOCK_STREAM, 0);
    if (server_sock_fd == -1) {
        perror("socket error");
        return 1;
    }
    //绑定socket
    int bind_result = bind(server_sock_fd, (struct sockaddr *)&server_addr, sizeof(server_addr));
    if (bind_result == -1) {
        perror("bind error");
        return 1;
    }
    //listen
    if (listen(server_sock_fd, BACKLOG) == -1) {
        perror("listen error");
        return 1;
    }
    struct timespec timeout = {10,0};
    //kqueue
    int kq = kqueue();
    if (kq == -1) {
        perror("创建kqueue出错!\n");
        exit(1);
    }
    struct kevent event_change;
    EV_SET(&event_change, STDIN_FILENO, EVFILT_READ, EV_ADD, 0, 0, NULL);
    kevent(kq, &event_change, 1, NULL, 0, NULL);
    EV_SET(&event_change, server_sock_fd, EVFILT_READ, EV_ADD, 0, 0, NULL);
    kevent(kq, &event_change, 1, NULL, 0, NULL);
    while (1) {
        int ret = kevent(kq, NULL, 0, events, 10, &timeout);
        if (ret < 0) {
            printf("kevent 出错!\n");
            continue;
        }else if(ret == 0){
            printf("kenvent 超时!\n");
            continue;
        }else{
            //ret > 0 返回事件放在events中
            for (int i = 0; i < ret; i++) {
                struct kevent current_event = events[i];
                //kevent中的ident就是文件描述符
                if (current_event.ident == STDIN_FILENO) {
                    //标准输入
                    bzero(input_msg, BUFFER_SIZE);
                    fgets(input_msg, BUFFER_SIZE, stdin);
                    //输入 ".quit" 则退出服务器
                    if (strcmp(input_msg, QUIT_CMD) == 0) {
                        exit(0);
                    }
                    for (int i=0; i<CONCURRENT_MAX; i++) {
                        if (client_fds[i]!=0) {
                            send(client_fds[i], input_msg, BUFFER_SIZE, 0);
                        }
                    }
                }else if(current_event.ident == server_sock_fd){
                    //有新的连接请求
                    struct sockaddr_in client_address;
                    socklen_t address_len;
                    int client_socket_fd = accept(server_sock_fd, (struct sockaddr *)&client_address, &address_len);
                    if (client_socket_fd > 0) {
                        int index = -1;
                        for (int i = 0; i < CONCURRENT_MAX; i++) {
                            if (client_fds[i] == 0) {
                                index = i;
                                client_fds[i] = client_socket_fd;
                                break;
                            }
                        }
                        if (index >= 0) {
                            EV_SET(&event_change, client_socket_fd, EVFILT_READ, EV_ADD, 0, 0, NULL);
                            kevent(kq, &event_change, 1, NULL, 0, NULL);
                            printf("新客户端(fd = %d)加入成功 %s:%d \n",client_socket_fd,inet_ntoa(client_address.sin_addr),ntohs(client_address.sin_port));
                        }else{
                            bzero(input_msg, BUFFER_SIZE);
                            strcpy(input_msg, "服务器加入的客户端数达到最大值,无法加入!\n");
                            send(client_socket_fd, input_msg, BUFFER_SIZE, 0);
                            printf("客户端连接数达到最大值,新客户端加入失败 %s:%d \n",inet_ntoa(client_address.sin_addr),ntohs(client_address.sin_port));
                        }
                    }
                }else{
                    //处理某个客户端过来的消息
                    bzero(recv_msg, BUFFER_SIZE);
                    long byte_num = recv((int)current_event.ident,recv_msg,BUFFER_SIZE,0);
                    if (byte_num > 0) {
                        if (byte_num > BUFFER_SIZE) {
                            byte_num = BUFFER_SIZE;
                        }
                        recv_msg[byte_num] = '\0';
                        printf("客户端(fd = %d):%s\n",(int)current_event.ident,recv_msg);
                    }else if(byte_num < 0){
                        printf("从客户端(fd = %d)接受消息出错.\n",(int)current_event.ident);
                    }else{
                        EV_SET(&event_change, current_event.ident, EVFILT_READ, EV_DELETE, 0, 0, NULL);
                        kevent(kq, &event_change, 1, NULL, 0, NULL);
                        close((int)current_event.ident);
                        for (int i = 0; i < CONCURRENT_MAX; i++) {
                            if (client_fds[i] == (int)current_event.ident) {
                                client_fds[i] = 0;
                                break;
                            }
                        }
                        printf("客户端(fd = %d)退出了\n",(int)current_event.ident);
                    }
                }
            }
        }
    }
    return 0;
}

其实kqueue的应用场景非常的广阔,可以监控文件系统中文件的变化(对文件变化的事件可以粒度非常的细,具体可以查看kqueue的手册),监控系统进程的生命周期。GCD的事件处理便是建立在kqueue之上的。


你可能感兴趣的:(linux socket学习(二))