pku2074 线段的切割
挺好的一道计算几何题目题目大意是:给一条线段代表房子,给一条线段代表路,给一些障碍物,求在路上能完全看到房子的最长连续长度
题目中所有线段都是和x轴平行的
两个难点
1、利用相似三角形,求出再房子和障碍物连线在路上的交点
2、判断线段的相交方式,并切割线段
这些问题都解决了之后,就是写代码了
1
/*
2 * SOUR:pku 2074
3 * ALGO:computional geometry
4 * DATE: Thu, 15 Oct 2009 23:22:48 +0800
5 * COMM:3
6 * */
7 #include < iostream >
8 #include < cstdio >
9 #include < cstdlib >
10 #include < cstring >
11 #include < algorithm >
12 #include < vector >
13 #include < cassert >
14 #include < cmath >
15 using namespace std;
16 typedef long long LL;
17 const int maxint = 0x7fffffff ;
18 const long long max64 = 0x7fffffffffffffffll;
19 template < class T > void show(T a, int n){ for ( int i = 0 ;i < n; ++ i)cout << a[i] << ' ' ;cout << endl;}
20 template < class T > void show(T a, int r, int l){ for ( int i = 0 ;i < r; ++ i)show(a[i],l);cout << endl;}
21 #define pr(x) fprintf(stderr, x)
22 /* #define pr(x) for(;0;) */
23 const int N = 512 ;
24 const double eps = 1e - 7 ;
25 struct NODE {
26 double x1,x2,y;
27 NODE(){}
28 NODE( double a, double b){ x1 = a,x2 = b; }
29 }h,ob,root;
30 vector < NODE > g[N];
31 int n,top,pt;
32
33
34 struct point_t{
35 double x,y;
36 point_t(){}
37 point_t( double a, double b){
38 x = a,y = b;
39 }
40 };
41 point_t operator + (point_t a,point_t b) { return point_t(a.x + b.x,a.y + b.y); }
42 point_t operator - (point_t a,point_t b) { return point_t(a.x - b.x,a.y - b.y); }
43 point_t operator * (point_t a, double b) { return point_t(a.x * b,a.y * b); }
44 point_t operator / (point_t a, double b) { return point_t(a.x / b,a.y / b); }
45 double sqr( double x) { return x * x;}
46 double dist(point_t a) { return sqrt(sqr(a.x) + sqr(a.y)); }
47 double dist(point_t a,point_t b) { return dist(a - b); }
48
49 void cut( int idx, double v1, double v2)
50 {
51 int i,j,k;
52 for (i = 0 ;i < g[idx - 1 ].size();i ++ ) {
53 if (v1 <= g[idx - 1 ][i].x1 && v2 >= g[idx - 1 ][i].x2) {
54 } else if (v1 <= g[idx - 1 ][i].x1 && v2 > g[idx - 1 ][i].x1 && v2 <= g[idx - 1 ][i].x2) {
55 g[idx].push_back(NODE(v2,g[idx - 1 ][i].x2));
56 } else if (v1 >= g[idx - 1 ][i].x1 && v1 < g[idx - 1 ][i].x2 && v2 >= g[idx - 1 ][i].x2) {
57 g[idx].push_back(NODE(g[idx - 1 ][i].x1,v1));
58 } else if (v1 >= g[idx - 1 ][i].x1 && v2 <= g[idx - 1 ][i].x2) {
59 g[idx].push_back(NODE(g[idx - 1 ][i].x1,v1));
60 g[idx].push_back(NODE(v2,g[idx - 1 ][i].x2));
61 } else {
62 g[idx].push_back(g[idx - 1 ][i]);
63 }
64 }
65 }
66
67
68 point_t cacu(point_t a,point_t b)
69 // b为ob,a为h
70 {
71 assert(h.y - root.y >= 0 );
72 assert(h.y - ob.y >= 0 );
73 return a + (b - a) * (h.y - root.y) / (h.y - ob.y);
74 }
75
76 int main()
77 {
78 int i,j,k;
79 while (scanf( " %lf%lf%lf " , & h.x1, & h.x2, & h.y) && (h.x1 || h.x2 || h.y)) {
80 scanf( " %lf%lf%lf " , & root.x1, & root.x2, & root.y);
81 scanf( " %d " , & n);
82 for (i = 0 ;i < N;i ++ ) {
83 g[i].clear();
84 }
85 g[ 0 ].push_back(root);
86 for (i = 1 ,j = 0 ;i <= n;i ++ ) {
87 scanf( " %lf%lf%lf " , & ob.x1, & ob.x2, & ob.y);
88 if (ob.y < h.y && ob.y > root.y) {
89 point_t v1 = cacu(point_t(h.x2,h.y) , point_t(ob.x1,ob.y));
90 point_t v2 = cacu(point_t(h.x1,h.y) , point_t(ob.x2,ob.y));
91 // printf("<%f,%f> <%f,%f>\n",v1.x,v1.y,v2.x,v2.y);
92 assert(v1.x <= v2.x && fabs(v1.y - v2.y) < eps);
93 cut( ++ j,v1.x,v2.x);
94 }
95 }
96 double res = 0 ;
97 for (i = 0 ;i < g[j].size();i ++ ) {
98 res = max(res,g[j][i].x2 - g[j][i].x1);
99 }
100 if (res < eps) {
101 printf( " No View\n " );
102 } else {
103 printf( " %.2f\n " ,res);
104 }
105 }
106 return 0 ;
107 }
108
109
1Y感觉很不错
2 * SOUR:pku 2074
3 * ALGO:computional geometry
4 * DATE: Thu, 15 Oct 2009 23:22:48 +0800
5 * COMM:3
6 * */
7 #include < iostream >
8 #include < cstdio >
9 #include < cstdlib >
10 #include < cstring >
11 #include < algorithm >
12 #include < vector >
13 #include < cassert >
14 #include < cmath >
15 using namespace std;
16 typedef long long LL;
17 const int maxint = 0x7fffffff ;
18 const long long max64 = 0x7fffffffffffffffll;
19 template < class T > void show(T a, int n){ for ( int i = 0 ;i < n; ++ i)cout << a[i] << ' ' ;cout << endl;}
20 template < class T > void show(T a, int r, int l){ for ( int i = 0 ;i < r; ++ i)show(a[i],l);cout << endl;}
21 #define pr(x) fprintf(stderr, x)
22 /* #define pr(x) for(;0;) */
23 const int N = 512 ;
24 const double eps = 1e - 7 ;
25 struct NODE {
26 double x1,x2,y;
27 NODE(){}
28 NODE( double a, double b){ x1 = a,x2 = b; }
29 }h,ob,root;
30 vector < NODE > g[N];
31 int n,top,pt;
32
33
34 struct point_t{
35 double x,y;
36 point_t(){}
37 point_t( double a, double b){
38 x = a,y = b;
39 }
40 };
41 point_t operator + (point_t a,point_t b) { return point_t(a.x + b.x,a.y + b.y); }
42 point_t operator - (point_t a,point_t b) { return point_t(a.x - b.x,a.y - b.y); }
43 point_t operator * (point_t a, double b) { return point_t(a.x * b,a.y * b); }
44 point_t operator / (point_t a, double b) { return point_t(a.x / b,a.y / b); }
45 double sqr( double x) { return x * x;}
46 double dist(point_t a) { return sqrt(sqr(a.x) + sqr(a.y)); }
47 double dist(point_t a,point_t b) { return dist(a - b); }
48
49 void cut( int idx, double v1, double v2)
50 {
51 int i,j,k;
52 for (i = 0 ;i < g[idx - 1 ].size();i ++ ) {
53 if (v1 <= g[idx - 1 ][i].x1 && v2 >= g[idx - 1 ][i].x2) {
54 } else if (v1 <= g[idx - 1 ][i].x1 && v2 > g[idx - 1 ][i].x1 && v2 <= g[idx - 1 ][i].x2) {
55 g[idx].push_back(NODE(v2,g[idx - 1 ][i].x2));
56 } else if (v1 >= g[idx - 1 ][i].x1 && v1 < g[idx - 1 ][i].x2 && v2 >= g[idx - 1 ][i].x2) {
57 g[idx].push_back(NODE(g[idx - 1 ][i].x1,v1));
58 } else if (v1 >= g[idx - 1 ][i].x1 && v2 <= g[idx - 1 ][i].x2) {
59 g[idx].push_back(NODE(g[idx - 1 ][i].x1,v1));
60 g[idx].push_back(NODE(v2,g[idx - 1 ][i].x2));
61 } else {
62 g[idx].push_back(g[idx - 1 ][i]);
63 }
64 }
65 }
66
67
68 point_t cacu(point_t a,point_t b)
69 // b为ob,a为h
70 {
71 assert(h.y - root.y >= 0 );
72 assert(h.y - ob.y >= 0 );
73 return a + (b - a) * (h.y - root.y) / (h.y - ob.y);
74 }
75
76 int main()
77 {
78 int i,j,k;
79 while (scanf( " %lf%lf%lf " , & h.x1, & h.x2, & h.y) && (h.x1 || h.x2 || h.y)) {
80 scanf( " %lf%lf%lf " , & root.x1, & root.x2, & root.y);
81 scanf( " %d " , & n);
82 for (i = 0 ;i < N;i ++ ) {
83 g[i].clear();
84 }
85 g[ 0 ].push_back(root);
86 for (i = 1 ,j = 0 ;i <= n;i ++ ) {
87 scanf( " %lf%lf%lf " , & ob.x1, & ob.x2, & ob.y);
88 if (ob.y < h.y && ob.y > root.y) {
89 point_t v1 = cacu(point_t(h.x2,h.y) , point_t(ob.x1,ob.y));
90 point_t v2 = cacu(point_t(h.x1,h.y) , point_t(ob.x2,ob.y));
91 // printf("<%f,%f> <%f,%f>\n",v1.x,v1.y,v2.x,v2.y);
92 assert(v1.x <= v2.x && fabs(v1.y - v2.y) < eps);
93 cut( ++ j,v1.x,v2.x);
94 }
95 }
96 double res = 0 ;
97 for (i = 0 ;i < g[j].size();i ++ ) {
98 res = max(res,g[j][i].x2 - g[j][i].x1);
99 }
100 if (res < eps) {
101 printf( " No View\n " );
102 } else {
103 printf( " %.2f\n " ,res);
104 }
105 }
106 return 0 ;
107 }
108
109