man epoll
The epoll event distribution interface is able to behave both as Edge
Triggered ( ET ) and Level Triggered ( LT ). The difference between ETepoll_ctl(2) with EPOLL_CTL_MOD.
EPOLL事件分发系统可以运转在两种模式下:
Edge Triggered (ET)
Level Triggered (LT)
接下来说明ET, LT这两种事件分发机制的不同。我们假定一个环境:
1. 我们已经把一个用来从管道中读取数据的文件句柄(RFD)添加到epoll描述符
2. 这个时候从管道的另一端被写入了2KB的数据
3. 调用epoll_wait(2),并且它会返回RFD,说明它已经准备好读取操作
4. 然后我们读取了1KB的数据
5. 调用epoll_wait(2)......
Edge Triggered 工作模式:
如果我们在第1步将RFD添加到epoll描述符的时候使用了EPOLLET标志,那么在第5步调用epoll_wait(2)之后将有可能会挂起,因为剩余的数据还存在于文件的输入缓冲区内,而且数据发出端还在等待一个针对已经发出数据的反馈信息。只有在监视的文件句柄上发生了某个事件的时候 ET 工作模式才会汇报事件。因此在第5步的时候,调用者可能会放弃等待仍在存在于文件输入缓冲区内的剩余数据。在上面的例子中,会有一个事件产生在RFD句柄上,因为在第2步执行了一个写操作,然后,事件将会在第3步被销毁。因为第4步的读取操作没有读空文件输入缓冲区内的数据,因此我们在第5步调用epoll_wait(2)完成后,是否挂起是不确定的。epoll工作在ET模式的时候,必须使用非阻塞套接口,以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。最好以下面的方式调用ET模式的epoll接口,在后面会介绍避免可能的缺陷。
i 基于非阻塞文件句柄
ii 只有当read(2)或者write(2)返回EAGAIN时才需要挂起,等待
Level Triggered 工作模式
相反的,以LT方式调用epoll接口的时候,它就相当于一个速度比较快的poll(2),并且无论后面的数据是否被使用,因此他们具有同样的职能。因为即使使用ET模式的epoll,在收到多个chunk的数据的时候仍然会产生多个事件。调用者可以设定EPOLLONESHOT标志,在epoll_wait(2)收到事件后epoll会与事件关联的文件句柄从epoll描述符中禁止掉。因此当EPOLLONESHOT设定后,使用带有EPOLL_CTL_MOD标志的epoll_ctl(2)处理文件句柄就成为调用者必须作的事情。
/////////////////////////////////////////////////////////////////////////////我是传说中的分割线//////////////////////////////////////////////////////////////////////////////////
下面两段是从网上找的epoll的较详细的解释:
LT(level triggered)是缺省的工作方式,并且同时支持block和no-block socket.在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的,所以,这种模式编程出错误可能性要小一点。传统的select/poll都是这种模型的代表.
ET(edge-triggered)是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了(比如,你在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致了一个EWOULDBLOCK 错误)。但是请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once),不过在TCP协议中,ET模式的加速效用仍需要更多的benchmark确认(这句话不理解)。
LT模式的时候,epoll_wait 会把有事件的 file 再次加到 rdllist 列表中,以便下次epoll_wait可以再检查一遍。
if (epi->event.events & EPOLLONESHOT)
epi->event.events &= EP_PRIVATE_BITS;
else if (!(epi->event.events & EPOLLET)) { //LT模式
/*
* If this file has been added with Level
* Trigger mode, we need to insert back inside
* the ready list, so that the next call to
* epoll_wait() will check again the events
* availability. At this point, noone can insert
* into ep->rdllist besides us. The epoll_ctl()
* callers are locked out by
* ep_scan_ready_list() holding "mtx" and the
* poll callback will queue them in ep->ovflist.
*/
list_add_tail(&epi->rdllink, &ep->rdllist);
}
LT 模式下,状态不会丢失,程序完全可以于 epoll 来驱动。
ET模式下,程序首先要自己驱动逻辑,如果遇到 EAGAIN错误的时候,就要依赖epoll_wait来驱动,这时epoll帮助程序从阻碍中脱离。
ET 的驱动事件依靠 socket的 sk_sleep 等待队列唤醒,这只有在有新包到来才能发生,数据包导致POLLIN, ACK确认导致 sk_buffer destroy从而导致POLLOUT, 但这不是一对一得关系,是多对一(多个网络包产生一个POLLIN, POLLOUT事件)。
ET常见错误:recv到了合适的长度, 程序处理完毕后就epoll_wait。这时程序可能长期阻塞,因为这时socket的 rev_buffer里还有数据,或对端close了连接,但这些信息都在上次通知了你,你没有处理完,就epoll_wait了。
正确做法是:recv到了合适的长度, 程序处理; 再次recv, 若果是EAGAIN则epoll_wait。
这个问题尤其在多个线程同时对一个epoll调用epoll_wait更要注意。istenfd和几个epollfd关联了. 有几个epoll_wait在等待....
ET 使用准则,只有出现EAGAIN错误才调用epoll_wait。
如果accpet调用有返回,除了建立当前这个连接外,不能马上就epoll_wait还需要继续循环accpet,直到返回-1,且errno==EAGAIN,TAF里面的示例代码:
if(ev.events & EPOLLIN)
{
do
{
struct sockaddr_in stSockAddr;
socklen_t iSockAddrSize = sizeof(sockaddr_in);
TC_Socket cs;
cs.setOwner(false);
//接收连接
TC_Socket s;
s.init(fd, false, AF_INET);
int iRetCode = s.accept(cs, (struct sockaddr *) &stSockAddr, iSockAddrSize);
if (iRetCode > 0)
{
…建立连接
}
else
{
//直到发生EAGAIN才不继续accept
if(errno == EAGAIN)
{
break;
}
}
}while(true);
}
同样,recv/send等函数, 都需要到errno==EAGAIN
对于ET而言,当然也不一定非send/recv到前面所述的结束条件才结束,用户可以自己随时控制,即用户可以在自己认为合适的时候去设置IN和OUT事件:
1 如果用户主动epoll_mod OUT事件,此时只要该句柄可以发送数据(发送buffer不满),则epoll_wait就会响应(有时候采用该机制通知epoll_wai醒过来)。
2 如果用户主动epoll_mod IN事件,只要该句柄还有数据可以读,则epoll_wait会响应。
这种逻辑在普通的服务里面都不需要,可能在某些特殊的情况需要。 但是请注意,如果每次调用的时候都去epoll mod将显著降低效率! 因此采用et写服务框架的时候,最简单的处理就是:
建立连接的时候epoll_add IN和OUT事件, 后面就不需要管了。每次read/write的时候,到两种情况下结束:
1 发生EAGAIN
2 read/write的实际字节数小于 需要读写的字节数